联合学习(FL)使一组客户能够在集中式服务器的帮助下共同列车机器学习模型。客户端不需要在培训期间向服务器提交本地数据,因此保护客户的本地培训数据受到保护。在FL中,分布式客户端独立收集其本地数据,因此每个客户端的数据集可以自然地形成不同的源域。在实践中,在多个源域培训的模型可能对看不见的目标域具有较差的泛化性能。为了解决这个问题,我们提出了FedAdg以用域泛化能力装备联合学习。 FedAdg采用联合的对冲学习方法来测量并对准不同源域之间的分布,并通过将每个分发与参考分布匹配。协同分布被自适应地生成(通过容纳所有源极域)以最小化对齐期间的域移位距离。在FEDADG中,对准是细粒度,因为每个类独立对齐。以这种方式,学习的特征表示应该是普遍的,因此它可以在看不见的域中概括很好。关于各种数据集的广泛实验表明,即使它们具有允许集中数据访问的额外优势,FedAdg也具有比主要的大多数解决方案更好的性能。为了支持研究重现性,项目代码可在https://github.com/wzml/fedadg中获得
translated by 谷歌翻译
联合学习(FL)是一个分散的学习范式,其中多个客户在不集中其本地数据的情况下进行培训深度学习模型,因此保留数据隐私。现实世界中的应用程序通常涉及在不同客户端的数据集上进行分发转换,这损害了客户从各自的数据分布中看不见样本的概括能力。在这项工作中,我们解决了最近提出的功能转移问题,其中客户具有不同的功能分布,而标签分布相同。我们建议联邦代表性扩大(FRAUG)来解决这个实用且具有挑战性的问题。我们的方法在嵌入空间中生成合成客户端特定的样本,以增加通常小客户端数据集。为此,我们训练一个共享的生成模型,以融合客户从其不同功能分布中学习的知识。该发电机合成了客户端 - 不合时式嵌入,然后通过表示转换网络(RTNET)将其局部转换为特定于客户端的嵌入。通过将知识转移到客户端,生成的嵌入式作为客户模型的正常化程序,并减少对本地原始数据集的过度拟合,从而改善了概括。我们对公共基准和现实医学数据集的经验评估证明了该方法的有效性,该方法在包括Partialfed和FedBN在内的非IID特征的当前最新FL方法大大优于最新的FL方法。
translated by 谷歌翻译
多源域的适应性已深入研究。特定域固有的特征的分布变化会导致负转移降低模型的一般性,从而看不见任务。在联合学习(FL)中,为了利用来自不同领域的知识,共享学习的模型参数以训练全球模型。但是,FL的数据机密性阻碍了需要先验了解不同域数据的传统领域适应方法的有效性。为此,我们提出了一种称为联合知识一致性(FEDKA)的新联合领域生成方法。 FEDKA利用全局工作区中的特征分布匹配,以便全局模型可以在未知域数据的约束下学习域不变的客户端功能。设计了一种联合投票机制,以基于促进全球模型微调的客户的共识来生成目标域伪标签。我们进行了广泛的实验,包括消融研究,以评估拟议方法在图像分类任务和基于具有不同复杂性的模型体系结构的文本分类任务中的有效性。经验结果表明,FEDKA可以分别在数字五和办公室-Caltech10中实现8.8%和3.5%的绩效增长,并且在亚马逊审查中获得了0.7%的增长,并且培训数据极为有限。
translated by 谷歌翻译
联合学习(FL)根据多个本地客户端协同聚合共享全球模型,同时保持培训数据分散以保护数据隐私。但是,标准的FL方法忽略了嘈杂的客户问题,这可能会损害聚合模型的整体性能。在本文中,我们首先分析了嘈杂的客户声明,然后用不同的噪声分布模型噪声客户端(例如,Bernoulli和截断的高斯分布)。要使用嘈杂的客户,我们提出了一个简单但有效的FL框架,名为联邦嘈杂的客户学习(FED-NCL),它是一个即插即用算法,并包含两个主要组件:动态的数据质量测量(DQM)量化每个参与客户端的数据质量,以及噪声鲁棒聚合(NRA),通过共同考虑本地训练数据和每个客户端的数据质量来自适应地聚合每个客户端的本地模型。我们的FED-NCL可以轻松应用于任何标准的流行流以处理嘈杂的客户端问题。各种数据集的实验结果表明,我们的算法提高了具有嘈杂客户端的不同现实系统的性能。
translated by 谷歌翻译
将知识蒸馏应用于个性化的跨筒仓联合学习,可以很好地减轻用户异质性的问题。然而,这种方法需要一个代理数据集,这很难在现实世界中获得。此外,基于参数平均的全球模型将导致用户隐私的泄漏。我们介绍了一个分布式的三位玩家GaN来实现客户之间的DataFree共蒸馏。该技术减轻了用户异质性问题,更好地保护用户隐私。我们证实,GaN产生的方法可以使联合蒸馏更有效和稳健,并且在获得全球知识的基础上,共蒸馏可以为各个客户达到良好的性能。我们对基准数据集的广泛实验证明了与最先进的方法的卓越的泛化性能。
translated by 谷歌翻译
联合学习是一种在不违反隐私限制的情况下对分布式数据集进行统计模型培训统计模型的最新方法。通过共享模型而不是客户和服务器之间的数据来保留数据位置原则。这带来了许多优势,但也带来了新的挑战。在本报告中,我们探讨了这个新的研究领域,并执行了几项实验,以加深我们对这些挑战的理解以及不同的问题设置如何影响最终模型的性能。最后,我们为这些挑战之一提供了一种新颖的方法,并将其与文献中的其他方法进行了比较。
translated by 谷歌翻译
Federated learning achieves joint training of deep models by connecting decentralized data sources, which can significantly mitigate the risk of privacy leakage. However, in a more general case, the distributions of labels among clients are different, called ``label distribution skew''. Directly applying conventional federated learning without consideration of label distribution skew issue significantly hurts the performance of the global model. To this end, we propose a novel federated learning method, named FedMGD, to alleviate the performance degradation caused by the label distribution skew issue. It introduces a global Generative Adversarial Network to model the global data distribution without access to local datasets, so the global model can be trained using the global information of data distribution without privacy leakage. The experimental results demonstrate that our proposed method significantly outperforms the state-of-the-art on several public benchmarks. Code is available at \url{https://github.com/Sheng-T/FedMGD}.
translated by 谷歌翻译
As the Internet grows in popularity, more and more classification jobs, such as IoT, finance industry and healthcare field, rely on mobile edge computing to advance machine learning. In the medical industry, however, good diagnostic accuracy necessitates the combination of large amounts of labeled data to train the model, which is difficult and expensive to collect and risks jeopardizing patients' privacy. In this paper, we offer a novel medical diagnostic framework that employs a federated learning platform to ensure patient data privacy by transferring classification algorithms acquired in a labeled domain to a domain with sparse or missing labeled data. Rather than using a generative adversarial network, our framework uses a discriminative model to build multiple classification loss functions with the goal of improving diagnostic accuracy. It also avoids the difficulty of collecting large amounts of labeled data or the high cost of generating large amount of sample data. Experiments on real-world image datasets demonstrates that the suggested adversarial federated transfer learning method is promising for real-world medical diagnosis applications that use image classification.
translated by 谷歌翻译
联合学习(FL)是一种新兴技术,用于协作训练全球机器学习模型,同时将数据局限于用户设备。FL实施实施的主要障碍是用户之间的非独立且相同的(非IID)数据分布,这会减慢收敛性和降低性能。为了解决这个基本问题,我们提出了一种方法(comfed),以增强客户端和服务器侧的整个培训过程。舒适的关键思想是同时利用客户端变量减少技术来促进服务器聚合和全局自适应更新技术以加速学习。我们在CIFAR-10分类任务上的实验表明,Comfed可以改善专用于非IID数据的最新算法。
translated by 谷歌翻译
联合学习的目的是从多个分散设备(即客户)培训全球模型,而无需交换其私人本地数据。关键挑战是处理非i.i.d。 (独立分布的)数据,这些数据可能引起其本地功能的差异。我们介绍了超球联邦学习(球形)框架,以解决非i.i.d。通过限制学习数据点的学习表示,以在客户共享的单位超孔上。具体而言,所有客户都通过最大程度地减少固定分类器的损失来学习其本地表示,其权重跨度跨越了单位。在联合培训改善了全球模型后,通过最大程度地减少平方平方损失,通过封闭形式的解决方案进一步校准了该分类器。我们表明,可以有效地计算校准解决方案,而无需直接访问本地数据。广泛的实验表明,我们的球形方法能够通过相当大的利润率(在具有挑战性的数据集中达到6%)来提高多个现有联合学习算法的准确性,并具有增强的计算和跨数据集和模型架构的通信效率。
translated by 谷歌翻译
联合学习(FL)在中央服务器的帮助下支持多个客户的全球机器学习模型的分布式培训。每个客户端持有的本地数据集从未在FL中交换,因此保护本地数据集隐私受到保护。尽管FL越来越流行,但不同客户的数据异质性导致客户模型漂移问题,并导致模型性能降级和模型公平不佳。为了解决这个问题,我们在本文中使用全球本地知识融合(FEDKF)计划设计联合学习。 FEDKF中的关键思想是让服务器返回每个训练回合中的全局知识,以与本地知识融合,以便可以将本地模型正规化为全球最佳选择。因此,可以缓解客户模型漂移问题。在FEDKF中,我们首先提出了支持精确的全球知识表示形式的主动模型聚合技术。然后,我们提出了一种无数据的知识蒸馏(KD)方法,以促进KD从全局模型到本地模型,而本地模型仍然可以同时学习本地知识(嵌入本地数据集中),从而实现了全局 - 本地知识融合过程。理论分析和密集实验表明,FEDKF同时实现高模型性能,高公平性和隐私性。纸质审查后,项目源代码将在GitHub上发布。
translated by 谷歌翻译
联合学习(FL)是一个分布式的机器学习框架,可以减轻数据孤岛,在该筒仓中,分散的客户在不共享其私人数据的情况下协作学习全球模型。但是,客户的非独立且相同分布的(非IID)数据对训练有素的模型产生了负面影响,并且具有不同本地更新的客户可能会在每个通信回合中对本地梯度造成巨大差距。在本文中,我们提出了一种联合矢量平均(FedVeca)方法来解决上述非IID数据问题。具体而言,我们为与本地梯度相关的全球模型设定了一个新的目标。局部梯度定义为具有步长和方向的双向向量,其中步长为局部更新的数量,并且根据我们的定义将方向分为正和负。在FedVeca中,方向受步尺的影响,因此我们平均双向向量,以降低不同步骤尺寸的效果。然后,我们理论上分析了步骤大小与全球目标之间的关系,并在每个通信循环的步骤大小上获得上限。基于上限,我们为服务器和客户端设计了一种算法,以自适应调整使目标接近最佳的步骤大小。最后,我们通过构建原型系统对不同数据集,模型和场景进行实验,实验结果证明了FedVeca方法的有效性和效率。
translated by 谷歌翻译
联邦学习(FL)是一种分布式学习方法,它为医学机构提供了在全球模型中合作的前景,同时保留患者的隐私。尽管大多数医疗中心执行类似的医学成像任务,但它们的差异(例如专业,患者数量和设备)导致了独特的数据分布。数据异质性对FL和本地模型的个性化构成了挑战。在这项工作中,我们研究了FL生产中间半全球模型的一种自适应分层聚类方法,因此具有相似数据分布的客户有机会形成更专业的模型。我们的方法形成了几个群集,这些集群由具有最相似数据分布的客户端组成;然后,每个集群继续分开训练。在集群中,我们使用元学习来改善参与者模型的个性化。我们通过评估我们在HAM10K数据集上的建议方法和极端异质数据分布的HAM10K数据集上的我们提出的方法,将聚类方法与经典的FedAvg和集中式培训进行比较。我们的实验表明,与标准的FL方法相比,分类精度相比,异质分布的性能显着提高。此外,我们表明,如果在群集中应用,则模型会更快地收敛,并且仅使用一小部分数据,却优于集中式培训。
translated by 谷歌翻译
在联合学习(FL)中,模型性能通常遭受数据异质性引起的客户漂移,而主流工作则专注于纠正客户漂移。我们提出了一种名为Virtual同质性学习(VHL)的不同方法,以直接“纠正”数据异质性。尤其是,VHL使用一个虚拟均匀的数据集进行FL,该数据集精心制作以满足两个条件:不包含私人信息和可分开的情况。虚拟数据集可以从跨客户端共享的纯噪声中生成,旨在校准异质客户的功能。从理论上讲,我们证明VHL可以在自然分布上实现可证明的概括性能。从经验上讲,我们证明了VHL赋予FL具有巨大改善的收敛速度和概括性能。VHL是使用虚拟数据集解决数据异质性的首次尝试,为FL提供了新的有效手段。
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译
Federated Learning有望在不访问数据的情况下与多个客户进行协作培训模型的能力,但是当客户的数据分布彼此差异时脆弱。这种差异进一步导致了困境:“我们是否应该优先考虑学习模型的通用性能(用于服务器的将来使用)或其个性化绩效(对于每个客户端)?”这两个看似竞争的目标使社区分裂了专注于一个或另一个,但在本文中,我们表明可以同时实现这两者。具体而言,我们提出了一个新颖的联邦学习框架,该框架将模型的双重职责与两个预测任务相结合。一方面,我们介绍了一个损失家族,这些损失家庭对非相同的班级分布,使客户能够培训一个通用的预测指标,并以一致的目标培训。另一方面,我们将个性化预测变量作为一种轻巧的自适应模块,以最大程度地减少每个客户在通用预测指标上的经验风险。借助我们将联合强大的脱钩(FED-ROD)命名的两个损失的两次挑战框架,学识渊博的模型可以同时实现最先进的通用和个性化的性能,从而实质上弥补了这两个任务。
translated by 谷歌翻译
Creating high-performance generalizable deep neural networks for phytoplankton monitoring requires utilizing large-scale data coming from diverse global water sources. A major challenge to training such networks lies in data privacy, where data collected at different facilities are often restricted from being transferred to a centralized location. A promising approach to overcome this challenge is federated learning, where training is done at site level on local data, and only the model parameters are exchanged over the network to generate a global model. In this study, we explore the feasibility of leveraging federated learning for privacy-preserving training of deep neural networks for phytoplankton classification. More specifically, we simulate two different federated learning frameworks, federated learning (FL) and mutually exclusive FL (ME-FL), and compare their performance to a traditional centralized learning (CL) framework. Experimental results from this study demonstrate the feasibility and potential of federated learning for phytoplankton monitoring.
translated by 谷歌翻译
本文提出了一个传感器数据匿名模型,该模型接受了分散数据的培训,并在数据实用程序和隐私之间进行了理想的权衡,即使在收集到的传感器数据具有不同的基础分布的异质环境中也是如此。我们称为Blinder的匿名模型基于以对抗性方式训练的变异自动编码器和歧视网络。我们使用模型 - 不合稳定元学习框架来调整通过联合学习训练的匿名模型,以适应每个用户的数据分布。我们在不同的设置下评估了盲人,并表明它提供了端到端的隐私保护,以增加隐私损失高达4.00%,并将数据实用程序降低高达4.24%,而最新的数据实用程序则将其降低了4.24%。对集中数据培训的匿名模型。我们的实验证实,Blinder可以一次掩盖多个私人属性,并且具有足够低的功耗和计算开销,以便将其部署在边缘设备和智能手机上,以执行传感器数据的实时匿名化。
translated by 谷歌翻译
典型的机器学习方法需要集中数据进行模型培训,这可能是由于例如隐私和梯度保护的数据共享的限制。最近提出的联合学习(FL)框架允许在没有集中的数据或数据所有者之间共享数据,允许在没有数据共享的数据中学习共享模型。然而,我们在本文中展示了联合模型的泛化能力在非独立和非相同分布(非IID)数据上差,特别是当由于重量分歧现象而使用联邦平均(FEDAVG)策略时。我们提出了一种新颖的促进算法,用于解决这种概括问题,以及在基于梯度的优化中实现了更快的收敛速率。此外,还引入了使用同型加密(HE)和差异隐私(DP)的安全渐变共享协议来防御梯度泄漏攻击。我们展示了所提出的联邦升压(FedBoost)方法在使用公共基准测试中对文本识别任务的预测准确性和运行时间效率实现了显着提高。
translated by 谷歌翻译
具有联合学习(FL)的自动语音识别(ASR)使得在不损害隐私的情况下利用来自多个客户的数据。基于FL的ASR质量可以通过识别性能,沟通和计算成本来衡量。当不同客户之间的数据不是独立且分布相同的(非IID)时,性能可能会大大降低。在这项工作中,我们使用个性化的FL解决了基于FL的ASR中的非IID问题,该问题为每个客户学习个性化模型。具体而言,我们提出了两种类型的ASR个性化FL方法。首先,我们将基于个性化的FL适应ASR,该层在本地保留一些层以学习个性化模型。其次,为了降低沟通和计算成本,我们提出了脱钩的联合学习(Decouplefl)。一方面,DeCoupleFL将计算负担移至服务器,从而减少了客户端的计算。另一方面,Decouplefl传达安全的高级功能而不是模型参数,从而在模型大时降低通信成本。实验表明,与FedAvg相比,两种提出的基于FL的ASR方法可以将WER降低2.3%-3.4%。其中,与FedAvg相比,Decouplefl仅具有11.4%的通信和75%的计算成本,这也明显少于基于个性化的FL。
translated by 谷歌翻译