联合学习(FL)是以保护隐私方式在异质客户设备上进行机器学习的框架。迄今为止,大多数FL算法都在多个回合中学习一个“全局”服务器模型。在每回合中,相同的服务器模型都向所有参与的客户端广播,在本地更新,然后跨客户端进行汇总。在这项工作中,我们提出了一个更一般的过程,客户“选择”了发送给他们的值的程序。值得注意的是,这使客户可以在较小的数据依赖性切片上操作。为了使这种实用性,我们概述了原始的联合选择,该选择可以在现实的FL系统中进行特定于客户的选择。我们讨论了如何使用联合选择进行模型培训,并表明它可以导致通信和客户记忆使用情况的急剧减少,从而有可能使模型的训练太大而无法适合处个设备。我们还讨论了联邦选择对隐私和信任的含义,这反过来影响了可能的系统约束和设计。最后,我们讨论有关模型体系结构,隐私保护技术和实用FL系统的开放问题。
translated by 谷歌翻译
Federated learning is a distributed machine learning paradigm in which a large number of clients coordinate with a central server to learn a model without sharing their own training data. Standard federated optimization methods such as Federated Averaging (FEDAVG) are often difficult to tune and exhibit unfavorable convergence behavior. In non-federated settings, adaptive optimization methods have had notable success in combating such issues. In this work, we propose federated versions of adaptive optimizers, including ADAGRAD, ADAM, and YOGI, and analyze their convergence in the presence of heterogeneous data for general nonconvex settings. Our results highlight the interplay between client heterogeneity and communication efficiency. We also perform extensive experiments on these methods and show that the use of adaptive optimizers can significantly improve the performance of federated learning.
translated by 谷歌翻译
Modern mobile devices have access to a wealth of data suitable for learning models, which in turn can greatly improve the user experience on the device. For example, language models can improve speech recognition and text entry, and image models can automatically select good photos. However, this rich data is often privacy sensitive, large in quantity, or both, which may preclude logging to the data center and training there using conventional approaches. We advocate an alternative that leaves the training data distributed on the mobile devices, and learns a shared model by aggregating locally-computed updates. We term this decentralized approach Federated Learning.We present a practical method for the federated learning of deep networks based on iterative model averaging, and conduct an extensive empirical evaluation, considering five different model architectures and four datasets. These experiments demonstrate the approach is robust to the unbalanced and non-IID data distributions that are a defining characteristic of this setting. Communication costs are the principal constraint, and we show a reduction in required communication rounds by 10-100× as compared to synchronized stochastic gradient descent.
translated by 谷歌翻译
可扩展性和隐私是交叉设备联合学习(FL)系统的两个关键问题。在这项工作中,我们确定了FL中的客户端更新的同步流动聚合不能高效地缩放到几百个并行培训之外。它导致ModelPerforce和训练速度的回报递减,Ampanysto大批量培训。另一方面,FL(即异步FL)中的客户端更新的异步聚合减轻了可扩展性问题。但是,聚合个性链子更新与安全聚合不兼容,这可能导致系统的不良隐私水平。为了解决这些问题,我们提出了一种新颖的缓冲异步聚合方法FedBuff,这是不可知的优化器的选择,并结合了同步和异步FL的最佳特性。我们经验证明FEDBuff比同步FL更有效,比异步FL效率更高3.3倍,同时兼容保留保护技术,如安全聚合和差异隐私。我们在平滑的非凸设置中提供理论融合保证。最后,我们显示在差异私有培训下,FedBuff可以在低隐私设置下占FEDAVGM并实现更高隐私设置的相同实用程序。
translated by 谷歌翻译
隐私和沟通效率是联邦神经网络培训中的重要挑战,并将它们组合仍然是一个公开的问题。在这项工作中,我们开发了一种统一高度压缩通信和差异隐私(DP)的方法。我们引入基于相对熵编码(REC)到联合设置的压缩技术。通过对REC进行微小的修改,我们获得了一种可怕的私立学习算法,DP-REC,并展示了如何计算其隐私保证。我们的实验表明,DP-REC大大降低了通信成本,同时提供与最先进的隐私保证。
translated by 谷歌翻译
Federated Learning is a machine learning setting where the goal is to train a highquality centralized model while training data remains distributed over a large number of clients each with unreliable and relatively slow network connections. We consider learning algorithms for this setting where on each round, each client independently computes an update to the current model based on its local data, and communicates this update to a central server, where the client-side updates are aggregated to compute a new global model. The typical clients in this setting are mobile phones, and communication efficiency is of the utmost importance. In this paper, we propose two ways to reduce the uplink communication costs: structured updates, where we directly learn an update from a restricted space parametrized using a smaller number of variables, e.g. either low-rank or a random mask; and sketched updates, where we learn a full model update and then compress it using a combination of quantization, random rotations, and subsampling before sending it to the server. Experiments on both convolutional and recurrent networks show that the proposed methods can reduce the communication cost by two orders of magnitude. * Work performed while also affiliated with University of Edinburgh.
translated by 谷歌翻译
联合学习(FL)作为边缘设备的有希望的技术,以协作学习共享预测模型,同时保持其训练数据,从而解耦了从需要存储云中的数据的机器学习的能力。然而,在规模和系统异质性方面,FL难以现实地实现。虽然有许多用于模拟FL算法的研究框架,但它们不支持在异构边缘设备上进行可扩展的流程。在本文中,我们呈现花 - 一种全面的FL框架,通过提供新的设施来执行大规模的FL实验并考虑丰富的异构流程来区分现有平台。我们的实验表明花卉可以仅使用一对高端GPU在客户尺寸下进行FL实验。然后,研究人员可以将实验无缝地迁移到真实设备中以检查设计空间的其他部分。我们认为花卉为社区提供了一个批判性的新工具,用于研究和发展。
translated by 谷歌翻译
联合学习用于大量(数百万)边缘移动设备的机器学习模型的分散培训。它充满挑战,因为移动设备通常具有有限的通信带宽和本地计算资源。因此,提高联合学习的效率对于可扩展性和可用性至关重要。在本文中,我们建议利用部分训练的神经网络,该网络在整个训练过程中冻结了一部分模型参数,以降低对模型性能的影响几乎没有影响的通信成本。通过广泛的实验,我们经验证明,部分培训的神经网络(FEDPT)的联合学习可能导致卓越的通信准确性权衡,通信成本高达46美元,以小的准确度成本。我们的方法还实现了更快的培训,具有较小的内存占用空间,更好的效用,以便强​​大的差异隐私保证。对于推动设备上学习中的过度参数化的局限性,所提出的FEDPT方法可以特别有趣。
translated by 谷歌翻译
跨设备联合学习是一种越来越受欢迎的机器学习设置,可以通过利用大量具有高隐私和安全保证的客户设备来培训模型。但是,在将联合学习扩展到生产环境时,沟通效率仍然是一个主要的瓶颈,尤其是由于上行链路沟通过程中的带宽限制。在本文中,我们在安全的聚合原始词下正式化并解决了压缩客户对服务器模型更新的问题,这是联合学习管道的核心组成部分,该管道允许服务器汇总客户端更新而不单独访问它们。特别是,我们调整标准标量量化和修剪方法以确保聚合并提出安全索引,这是一个安全聚合的变体,支持量化以进行极端压缩。我们在安全联合学习设置中建立了最新的叶基准测试结果,与未压缩基线相比,在上行链路通信中最多40美元$ \ times $ compression,无意义的损失。
translated by 谷歌翻译
最近,Niu,et。 al。介绍了一个新的联合学习(FL)的新变种​​,称为联邦子模型学习(FSL)。与传统的FL不同,每个客户端都会根据其私有数据在本地列出子模型(例如,从服务器检索),并在其选择到服务器时将子模型上载。然后所有客户端都会聚合所有子模型并完成迭代。不可避免地,FSL引入了两个隐私保留的计算任务,即私有子模型检索(PSR)和Secure Semodel聚合(SSA)。现有工作未能提供较少的亏损计划,或具有不切实际的效率。在这项工作中,我们利用分布式点函数(DPF)和Cuckoo Hashing来构建双服务器设置中的实用和轻量度安全FSL方案。更具体地说,我们提出了两个具有少量优化技术的基本协议,可确保我们对特定现实FSL任务的协议实用性。我们的实验表明,当重量尺寸$ \ LEQ 2 ^ {15} $时,我们所提出的协议可以在不到1分钟内完成,我们还通过与现有工作进行比较来展示协议效率,并通过处理真实世界的FSL任务。
translated by 谷歌翻译
Federated Learning is a distributed machine learning approach which enables model training on a large corpus of decentralized data. We have built a scalable production system for Federated Learning in the domain of mobile devices, based on TensorFlow. In this paper, we describe the resulting high-level design, sketch some of the challenges and their solutions, and touch upon the open problems and future directions.
translated by 谷歌翻译
随着对数据隐私和数据量迅速增加的越来越关注,联邦学习(FL)已成为重要的学习范式。但是,在FL环境中共同学习深层神经网络模型被证明是一项非平凡的任务,因为与神经网络相关的复杂性,例如跨客户的各种体系结构,神经元的置换不变性以及非线性的存在每一层的转换。这项工作介绍了一个新颖的联合异质神经网络(FEDHENN)框架,该框架允许每个客户构建个性化模型,而无需在跨客户范围内实施共同的架构。这使每个客户都可以优化本地数据并计算约束,同时仍能从其他(可能更强大)客户端的学习中受益。 Fedhenn的关键思想是使用从同行客户端获得的实例级表示,以指导每个客户的同时培训。广泛的实验结果表明,Fedhenn框架能够在跨客户的同质和异质体系结构的设置中学习更好地表现客户的模型。
translated by 谷歌翻译
传统的深度学习方法(DL)需要在中央服务器上收集和处理的培训数据,这些中央服务器通常在保健等隐私敏感域中挑战。为此,提出了一种新的学习范式,称为联合学习(FL),在解决隐私和数据所有权问题的同时将DL的潜力带到了这些域。 FL使远程客户端能够在保持数据本地时学习共享ML模型。然而,传统的FL系统面临多种挑战,例如可扩展性,复杂的基础设施管理,并且由于空闲客户端而被浪费的计算和产生的成本。 FL系统的这些挑战与无服务器计算和功能 - AS-Service(FAAS)平台旨在解决的核心问题密切对齐。这些包括快速可扩展性,无基础设施管理,自动缩放为空闲客户端,以及每次使用付费计费模型。为此,我们为无服务器FL展示了一个新颖的系统和框架,称为不发烟。我们的系统支持多个商业和自主主机的FAAS提供商,可以在机构数据中心和边缘设备上部署在云端,内部部署。据我们所知,我们是第一个能够在一大面料的异构FAAS提供商中启用FL,同时提供安全性和差异隐私等重要功能。我们展示了全面的实验,即使用我们的系统可以成功地培训多达200个客户功能的不同任务,更容易实现。此外,我们通过将其与传统的FL系统进行比较来证明我们的方法的实际可行性,并表明它可以更便宜,更资源效率更便宜。
translated by 谷歌翻译
交叉设备联合学习(FL)是一种分布式学习范例,具有几种挑战,这些挑战将其区分离为传统的分布式学习,每个设备上的系统特征的可变性,以及数百万客户端与主要服务器协调。文献中描述的大多数FL系统是同步的 - 它们从各个客户端执行模型更新的同步聚合。缩放同步FL是挑战,因为增加了并行培训的客户数量导致训练速度的回报递减,类似于大批培训。而且,陷阱妨碍了同步流动训练。在这项工作中,我们概述了一种生产异步流行系统设计。我们的工作解决了上述问题,一些系统设计挑战及其解决方案的草图,并触及了为数百万客户建立生产流系统的原则。凭经验,我们证明异步流量在跨越近一亿台设备时比同步液更快地收敛。特别地,在高并发设置中,异步FL速度快5倍,并且具有比同步FL更小的通信开销差距。
translated by 谷歌翻译
联合学习(FL)是一个分布式学习范式,使相互不信任的客户能够协作培训通用的机器学习模型。客户数据隐私在FL中至关重要。同时,必须保护模型免受对抗客户的中毒攻击。现有解决方案孤立地解决了这两个问题。我们提出了FedPerm,这是一种新的FL算法,它通过结合一种新型的内部模型参数改组技术来解决这两个问题,该技术可以放大数据隐私,并基于私人信息检索(PIR)技术,该技术允许允许对客户模型更新的加密聚合。这些技术的组合进一步有助于联邦服务器约束从客户端的参数更新,从而减少对抗性客户的模型中毒攻击的影响。我们进一步介绍了Fedperm独特的超参数,可以有效地使用Model Utilities进行计算开销。我们对MNIST数据集的经验评估表明,FEDPERM对FL中现有差异隐私(DP)执法解决方案的有效性。
translated by 谷歌翻译
联合学习(FL)框架使Edge客户能够协作学习共享的推理模型,同时保留对客户的培训数据的隐私。最近,已经采取了许多启发式方法来概括集中化的自适应优化方法,例如SGDM,Adam,Adagrad等,以提高收敛性和准确性的联合设置。但是,关于在联合设置中的位置以及如何设计和利用自适应优化方法的理论原理仍然很少。这项工作旨在从普通微分方程(ODE)的动力学的角度开发新的自适应优化方法,以开发FL的新型自适应优化方法。首先,建立了一个分析框架,以在联合优化方法和相应集中优化器的ODES分解之间建立连接。其次,基于这个分析框架,开发了一种动量解耦自适应优化方法FedDA,以充分利用每种本地迭代的全球动量并加速训练收敛。最后但并非最不重要的一点是,在训练过程结束时,全部批处理梯度用于模仿集中式优化,以确保收敛并克服由自适应优化方法引起的可能的不一致。
translated by 谷歌翻译
联合学习提供了以分布式方式学习异质用户数据的能力,同时保留用户隐私。但是,当前的客户选择技术是偏见的来源,因为它歧视了缓慢的客户。对于初学者,它选择满足某些网络和系统特定标准的客户端,从而选择慢速客户端。即使将这些客户包括在培训过程中,他们要么踩踏培训,要么因太慢而从回合中完全掉下来。我们提出的想法希望通过查看智能客户的选择和调度技术来找到快速融合和异质性之间的绝佳位置。
translated by 谷歌翻译
联合学习(FL)已成为边缘设备的一种有前途的技术,可以协作学习共享的机器学习模型,同时将培训数据保留在设备上,从而消除了在云中存储和访问完整数据的需求。但是,考虑到公共边缘设备设置中的异质性,FL很难实施,测试和部署在实践中,从而使研究人员从根本上难以有效原型和测试其优化算法。在这项工作中,我们的目的是通过引入FL_PYTORCH:用Python编写的一套开源软件来减轻此问题,该软件以最受欢迎的研究深度学习(DL)框架Pytorch为基础。我们构建了FL_PYTORCH作为FL的研究模拟器,以实现快速开发,原型制作和实验新的和现有的FL优化算法。我们的系统支持摘要,为研究人员提供足够的灵活性,以实验现有和新颖的方法以推进最先进的方法。此外,FL_PYTORCH是一个易于使用的控制台系统,允许使用本地CPU或GPU同时运行多个客户端,甚至可以远程计算设备,而无需用户提供的任何分布式实现。 FL_PYTORCH还提供图形用户界面。对于新方法,研究人员仅提供其算法的集中实施。为了展示系统的可能性和实用性,我们尝试了几种著名的最先进的FL算法和一些最常见的FL数据集。
translated by 谷歌翻译
Federated learning (FL) has been proposed as a privacy-preserving approach in distributed machine learning. A federated learning architecture consists of a central server and a number of clients that have access to private, potentially sensitive data. Clients are able to keep their data in their local machines and only share their locally trained model's parameters with a central server that manages the collaborative learning process. FL has delivered promising results in real-life scenarios, such as healthcare, energy, and finance. However, when the number of participating clients is large, the overhead of managing the clients slows down the learning. Thus, client selection has been introduced as a strategy to limit the number of communicating parties at every step of the process. Since the early na\"{i}ve random selection of clients, several client selection methods have been proposed in the literature. Unfortunately, given that this is an emergent field, there is a lack of a taxonomy of client selection methods, making it hard to compare approaches. In this paper, we propose a taxonomy of client selection in Federated Learning that enables us to shed light on current progress in the field and identify potential areas of future research in this promising area of machine learning.
translated by 谷歌翻译
个性化联合学习认为在异质网络中每个客户独有的学习模型。据称,最终的客户特定模型是为了改善联合网络中的准确性,公平性和鲁棒性等指标。但是,尽管该领域有很多工作,但仍不清楚:(1)哪些个性化技术在各种环境中最有效,以及(2)个性化对现实的联合应用程序的真正重要性。为了更好地回答这些问题,我们提出了Motley,这是个性化联合学习的基准。 Motley由一套来自各种问题域的跨设备和跨核管联合数据集组成,以及彻底的评估指标,以更好地理解个性化的可能影响。我们通过比较许多代表性的个性化联合学习方法来建立基准基准。这些最初的结果突出了现有方法的优势和劣势,并为社区提出了几个开放问题。 Motley旨在提供一种可再现的手段,以推进个性化和异质性的联合学习以及转移学习,元学习和多任务学习的相关领域。
translated by 谷歌翻译