神经桌面到文本的生成方法是渴望数据的,限制了它们对低资源现实世界应用的适应性。先前的工作主要诉诸于训练的语言模型(PLM),以生成表格的表格摘要。但是,由于PLM的性质不受控制,它们通常包含幻觉内容。此外,很少研究表和序列之间的拓扑差异。最后但并非最不重要的一点是,在PLM上进行少量实例进行微调可能会导致过度贴合和灾难性的遗忘。为了减轻这些问题,我们提出了一种基于及时的方法,前缀控制的发电机(即PCG),用于几乎没有表格到文本的生成。我们为PLM的特定于任务的前缀预备,以使表结构更适合预训练的输入。此外,我们生成一个特定于输入的前缀,以控制生成的文本的事实内容和单词顺序。对Wikibio数据集的不同领域(人类,书籍和歌曲)的自动评估和人类评估都显示出对基线方法的实质性改进。
translated by 谷歌翻译
Controllable Text Generation (CTG) is emerging area in the field of natural language generation (NLG). It is regarded as crucial for the development of advanced text generation technologies that are more natural and better meet the specific constraints in practical applications. In recent years, methods using large-scale pre-trained language models (PLMs), in particular the widely used transformer-based PLMs, have become a new paradigm of NLG, allowing generation of more diverse and fluent text. However, due to the lower level of interpretability of deep neural networks, the controllability of these methods need to be guaranteed. To this end, controllable text generation using transformer-based PLMs has become a rapidly growing yet challenging new research hotspot. A diverse range of approaches have emerged in the recent 3-4 years, targeting different CTG tasks which may require different types of controlled constraints. In this paper, we present a systematic critical review on the common tasks, main approaches and evaluation methods in this area. Finally, we discuss the challenges that the field is facing, and put forward various promising future directions. To the best of our knowledge, this is the first survey paper to summarize CTG techniques from the perspective of PLMs. We hope it can help researchers in related fields to quickly track the academic frontier, providing them with a landscape of the area and a roadmap for future research.
translated by 谷歌翻译
微调下游任务的大型预训练语言模型已成为NLP中的事实上学习范式。然而,常规方法微调预先训练模型的所有参数,这变得越来越稳定,因为模型尺寸和增长的任务数量。最近的工作提出了各种参数有效的转移学习方法,只需微调少数(额外)参数以获得强大的性能。虽然有效,但各种方法中的成功和联系的关键成分尚不清楚。在本文中,我们分解了最先进的参数有效的传输学习方法的设计,并提出了一个在它们之间建立连接的统一框架。具体而言,我们将它们重新框架作为预先训练的模型对特定隐藏状态的修改,并定义了一组设计尺寸,不同的方法变化,例如计算修改的功能和应用修改的位置。通过跨机翻译的全面实证研究,文本摘要,语言理解和文本分类基准,我们利用统一的视图来确定以前的方法中的重要设计选择。此外,我们的统一框架使得能够在不同的方法中传输设计元素,因此我们能够实例化新的参数高效的微调方法,该方法比以前的方法更加有效,而是更有效,实现可比的结果在所有四个任务上调整所有参数。
translated by 谷歌翻译
大多数NER方法都依赖于广泛的标记数据进行模型培训,这些数据在低资源场景中挣扎,培训数据有限。与资源丰富的源域相比,现有的主要方法通常会遇到目标域具有不同标签集的挑战,该标签集可以作为类传输和域转移得出的结论。在本文中,我们通过可拔出的提示(Lightner)提出了一个轻巧的调整范式,用于低资源。具体而言,我们构建了实体类别的统一可学习的语言器,以生成实体跨度序列和实体类别,而无需任何标签特定的分类器,从而解决了类转移问题。我们通过将可学习的参数纳入自我发言层作为指导,进一步提出了一个可插入的指导模块,该参数可以重新调节注意力并调整预训练的权重。请注意,我们仅通过修复了预训练的语言模型的整个参数来调整那些插入的模块,从而使我们的方法轻巧且灵活地适合低资源场景,并且可以更好地跨域传输知识。实验结果表明,Lightner可以在标准监督环境中获得可比的性能,并且在低资源设置中优于强大基线。代码在https://github.com/zjunlp/deepke/tree/main/main/example/ner/few-shot中。
translated by 谷歌翻译
Query-focused summarization has been considered as an important extension for text summarization. It aims to generate a concise highlight for a given query. Different from text summarization, query-focused summarization has long been plagued by the problem of lacking high-quality large-scale datasets. In this paper, we investigate the idea that whether we can integrate and transfer the knowledge of text summarization and question answering to assist the few-shot learning in query-focused summarization. Here, we propose prefix-merging, a prefix-based pretraining strategy for few-shot learning in query-focused summarization. Drawn inspiration from prefix-tuning, we are allowed to integrate the task knowledge from text summarization and question answering into a properly designed prefix and apply the merged prefix to query-focused summarization. With only a small amount of trainable parameters, prefix-merging outperforms fine-tuning on query-focused summarization. We further discuss the influence of different prefix designs and propose a visualized explanation for how prefix-merging works.
translated by 谷歌翻译
预训练模型已在许多代码智能任务中有效。这些模型在大规模未标记的语料库中进行了预训练,然后在下游任务中进行了微调。但是,由于预训练和下游任务的输入是不同的形式,因此很难充分探索预训练模型的知识。此外,微调的性能强烈依赖于下游数据的量,而实际上,具有稀缺数据的场景很常见。自然语言处理(NLP)领域的最新研究表明,迅速调整,一种调整的新范式,减轻上述问题并在各种NLP任务中实现了有希望的结果。在迅速调整中,在调整过程中插入的提示提供了特定于任务的知识,这对于具有相对较少数据的任务特别有益。在本文中,我们凭经验评估了代码智能任务中迅速调整的用法和效果。我们对流行的预训练模型Codebert和codet5进行及时调整,并尝试三个代码智能任务,包括缺陷预测,代码摘要和代码翻译。我们的实验结果表明,在所有三个任务中,迅速调整始终优于微调。此外,及时调整在低资源场景中显示出很大的潜力,例如,对于代码摘要,平均将微调的BLEU分数提高了26%以上。我们的结果表明,我们可以调整代码智能任务的迅速调整,以实现更好的性能,尤其是在缺乏特定于任务的数据时,我们可以调整及时调整。
translated by 谷歌翻译
对事件序列的预测对于信息检索和自然语言处理中的许多现实世界应用至关重要。在事件序列预测中,未来的活动生成(FEG)是一项具有挑战性的任务,因为它不仅需要流利的文本生成,而且需要常识性推理才能保持整个事件故事的逻辑连贯性。在本文中,我们提出了一个新颖的可解释的FEG框架COEP。它突出并整合了两种类型的事件知识,对直接事件事件关系的顺序知识以及推论知识,这些知识反映了事件之间的中间角色心理学(例如意图,原因,反应),这些心理本质地将故事推向了故事。为了减轻知识遗忘问题,我们为每种类型的知识设计了两个模块,即IM和GM,它们是通过及时调整组合的。首先,IM专注于理解推论知识,以产生常识性解释并为通用汽车提供软提示向量。我们还设计了一种对比歧视器,以提高概括能力。其次,GM通过用IM的指导对直接顺序知识进行建模来生成未来事件。自动和人类评估表明,我们的方法可以产生更连贯,具体和逻辑的未来事件。
translated by 谷歌翻译
当前有效的微调方法(例如,适配器,前缀调整等)通过培训一小组神经语言模型的额外参数进行优化的条件文本生成,同时冻结其余效率。虽然在某些一代任务中显示出强大表现,但它们不会概括所有一代任务。在这项工作中,我们表明可以提高基于迅速的条件文本生成,简单而有效的方法模拟了人类书面文本的话语结构建模。我们介绍了两个关键设计选择:首先,我们表明人写文本的更高级别的话语结构可以用前缀参数上的\ Textit {分层阻塞}建模,使得能够跨越输入和输出文本的不同部分,并产生更长度的输出几代人。其次,我们通过在网络上的不同层的前缀参数上引入\ texit {注意稀疏性}来提出稀疏的前缀调整,并分别学习SoftMax函数上的稀疏变换。我们发现稀疏的注意力使前缀调整能够更好地控制输入内容(突出事实),从而更有效地调整前缀参数。在各种文本生成任务上的实验表明,前缀参数的结构化设计可以实现可比的结果,以微调所有参数,同时即使在低资源设置中也表现出所有生成任务的标准前缀调整。
translated by 谷歌翻译
数据到文本生成系统旨在基于输入数据生成文本描述(通常以表格形式表示)。典型系统使用巨大的训练样本来学习表和文本之间的对应关系。然而,大型训练套装昂贵,可以获得这些方法在现实世界方案中的适用性。在这项工作中,我们专注于几次数据到文本生成。我们观察到,虽然微调预训练的语言模型可能会产生合理的句子,但它们在几次拍摄设置中遭受了低语义覆盖问题。换句话说,生成的文本中的重要输入时隙往往丢失。为此,我们提出了一种搜索和学习方法,可以利用预训练的语言模型,而是插入丢失的插槽以提高语义覆盖。我们根据搜索结果进一步微调我们的系统,以平滑搜索噪声,在很大程度上产生更好的质量文本并提高推理效率。实验表明,我们的模型在E2E和Wikibio数据集上实现了高性能。特别是,我们在E2E上覆盖了98.35%的输入槽,很大程度上减轻了低覆盖问题。
translated by 谷歌翻译
最近,在大型文本语料库上预先培训的微调语言模型已经为Vision-and Langual(V&L)任务以及纯语言任务提供了巨大的改进。但是,微调预训练模型的整个参数集变得不切实际,因为模型大小正在快速增长。因此,在本文中,我们将基于适配器的参数高效转移学习技术引入VL-BART和VL-T5等V&L型号。我们在四个不同V&L任务的统一多任务设置中评估我们的方法:VQAV2,GQA,NLVR2和MSCOCO图像标题。通过仔细的培训和彻底的实验,我们将三种流行的基于适配器的方法(适配器,Hyperformer,Compacter)基准,抵御标准的全部微调和最近提出的及时调整方法。我们还通过分享其权重以获得跨任务的知识来增强适配器的效率和性能。我们的结果表明,使用权重共享技术(总参数的4.4%)培训适配器可以匹配微调整个模型的性能。最后,我们提出了一个全面的分析,包括适配器和任务特定提示的组合以及V&L对适配器进行培训的影响。我们的代码可用于:https://github.com/ylsung/vl_adapter。
translated by 谷歌翻译
In this work, we explore "prompt tuning," a simple yet effective mechanism for learning "soft prompts" to condition frozen language models to perform specific downstream tasks. Unlike the discrete text prompts used by GPT-3, soft prompts are learned through backpropagation and can be tuned to incorporate signals from any number of labeled examples. Our end-to-end learned approach outperforms GPT-3's few-shot learning by a large margin. More remarkably, through ablations on model size using T5, we show that prompt tuning becomes more competitive with scale: as models exceed billions of parameters, our method "closes the gap" and matches the strong performance of model tuning (where all model weights are tuned). This finding is especially relevant because large models are costly to share and serve and the ability to reuse one frozen model for multiple downstream tasks can ease this burden. Our method can be seen as a simplification of the recently proposed "prefix tuning" of Li and Liang (2021) and we provide a comparison to this and other similar approaches. Finally, we show that conditioning a frozen model with soft prompts confers benefits in robustness to domain transfer and enables efficient "prompt ensembling." * Work done as a Google AI Resident.
translated by 谷歌翻译
预先接受的语言模型(PLM)在神经对话建模中标志着巨大的飞跃。虽然PLMS在大型文本语料库上进行预先培训,但通常在具有特定领域知识和对话风格的稀缺对话数据上进行微调。然而,在大型预先训练模型中充分利用现有知识的同时定制语言模型仍然是一个挑战。在本文中,我们提出了一种预先接受训练的对话建模的新方法,将对话生成问题作为一个快速学习任务。而不是在有限的对话数据上进行微调,我们的方法,DialogPrompt学习针对对话背景优化的连续提示嵌入,从而从大型预训练模型中促进了知识。为了鼓励模型更好地利用提示嵌入,提示编码器被设计为在输入对话框上下文中的条件。流行对话数据集的实验表明,我们的方法显着优于微调基线和通用及时学习方法。此外,人类评估强烈支持对DialialPrompt的优越性在响应生成质量方面。
translated by 谷歌翻译
及时调整是以参数有效的方式对预训练的预训练语言模型的新范式。在这里,我们探讨了超级核武器的使用来产生超预价:我们提出了HyperPrompt,这是一种用于迅速基于变形金刚自我注意的任务调节的新型体系结构。超预要是通过超网络通过一代人来学习的端到端。 HyperPrompt允许网络学习特定于任务的功能地图,其中超预告是要参与的查询的任务全局记忆,同时启用了任务之间的灵活信息共享。我们表明,HyperPrompt与强大的多任务学习基线具有竞争力,其额外的任务条件参数的$ 0.14 \%$ $ \%,实现了出色的参数和计算效率。通过广泛的经验实验,我们证明,超级启示可以比强大的T5多任务学习基准和参数效率高效的适配器变体获得卓越的性能,包括及时调整和SuplyFormer ++在许多模型尺寸的自然语言理解胶水和SuperGrue的基准上。
translated by 谷歌翻译
几乎没有射击的内在学习(ICL)使预训练的语言模型能够通过为输入的一部分提供少量的培训示例来执行以前的任务,而无需任何基于梯度的培训。 ICL会产生大量的计算,内存和存储成本,因为它每次进行预测时都涉及处理所有培训示例。参数有效的微调(PEFT)(例如,适配器模块,提示调谐,稀疏更新方法等)提供了替代范式,其中训练了一组少量参数以启用模型来执行新任务。在本文中,我们严格地比较了几个ICL和PEFT,并证明后者提供了更好的准确性,并大大降低了计算成本。在此过程中,我们引入了一种称为(IA)$^3 $的新PEFT方法,该方法通过学习的向量来扩展激活,从而获得更强的性能,同时仅引入相对少量的新参数。我们还提出了一个基于称为T-FEW的T0模型的简单食谱,可以将其应用于新任务,而无需特定于任务的调整或修改。我们通过将T-FEW应用于木筏基准,首次实现超人性能,并以6%的绝对性能优于最先进的方法来验证T-FEW对完全看不见的任务的有效性。我们实验中使用的所有代码均可公开使用。
translated by 谷歌翻译
及时调整是将预训练模型调整到下游任务的极其有效的工具。但是,基于标准及时的方法主要考虑下游任务的足够数据的情况。目前尚不清楚是否可以将优势传输到几杆式制度,在每个下游任务中只有有限的数据。尽管有些作品证明了在几次弹奏设置下及时调整的潜力,但通过搜索离散提示或使用有限数据调整软提示的主流方法仍然非常具有挑战性。通过广泛的实证研究,我们发现迅速调整和完全微调之间的学习差距仍然存在差距。为了弥合差距,我们提出了一个新的及时调整框架,称为软模板调整(STT)。 STT结合了手册和自动提示,并将下游分类任务视为掩盖语言建模任务。对不同设置的全面评估表明,STT可以在不引入其他参数的情况下缩小微调和基于及时的方法之间的差距。值得注意的是,它甚至可以胜过情感分类任务的时间和资源消耗的微调方法。
translated by 谷歌翻译
预训练的语言模型(PLM)在自然语言生成(NLG)任务中取得了显着的成功。到目前为止,大多数PLM都使用大型一般语料库以无监督的方式进行了预培训。同时,与无监督的模型相比,预先训练的模型越来越多地显示出较低的数据表现出色。受监督预训练的成功的激励,我们提出了自然语言生成的多任务监督预训练(MVP)。为了预先培训文本生成模型MVP,我们从七个生成任务中收集了45个数据集的标记预训练语料库。对于每个任务,我们进一步预先训练特定的软提示,以刺激执行特定任务的模型能力。广泛的实验证明了我们在许多NLG任务中有监督的预训练的有效性,并且我们的一般方法在17个数据集中的12个中实现了最先进的性能。
translated by 谷歌翻译
在这项工作中,我们证明了多种语的大规模序列到序列(SEQ2SEQ)模型,该模型是通过Denoising和因果语言建模(CLM)任务的混合物进行训练的,比仅解码器模型更有效地进行了效率的学习者在各种任务上。特别是,我们培训了一个名为Alexa教师模型(Alexatm 20b)的200亿个参数多语言SEQ2SEQ模型,并表明它在1-Shot摘要任务上实现了最先进的(SOTA)性能,超过了更大的540B PALM DOPODER模型。 Alexatm 20b还可以在1-Shot Machine翻译中实现SOTA,尤其是对于低资源语言,几乎所有语言对(阿拉伯语,英语,法语,德语,德语,印地语,意大利语,日语,以及flores-101数据集上的泰卢固语)。我们还显示了零拍设置,AlexATM 20B在SuperGlue和SqueadV2数据集上的表现优于GPT3(175B),并在XNLI,XCOPA,PAWS-X和XWINOGRAD等多语言任务上提供SOTA性能。总体而言,我们的结果为SEQ2SEQ模型提供了一个令人信服的案例,作为大型语言模型(LLM)培训的仅解码器模型的强大替代方法。
translated by 谷歌翻译
The diverse demands of different summarization tasks and their high annotation costs are driving a need for few-shot summarization. However, despite the emergence of many summarization tasks and datasets, the current training paradigm for few-shot summarization systems ignores potentially shareable knowledge in heterogeneous datasets. To this end, we propose \textsc{UniSumm}, a unified few-shot summarization model pre-trained with multiple summarization tasks and can be prefix-tuned to excel at any few-shot summarization datasets. Meanwhile, to better evaluate few-shot summarization systems, under the principles of diversity and robustness, we assemble and publicize a new benchmark \textsc{SummZoo}. It consists of $8$ diverse summarization tasks with multiple sets of few-shot samples for each task, covering both monologue and dialogue domains. Experimental results and ablation studies show that \textsc{UniSumm} outperforms strong baseline systems by a large margin across all tasks in \textsc{SummZoo} under both automatic and human evaluations. We release our code and benchmark at \url{https://github.com/microsoft/UniSumm}.
translated by 谷歌翻译
Recently, a large number of tuning strategies have been proposed to adapt pre-trained language models to downstream tasks. In this paper, we perform an extensive empirical evaluation of various tuning strategies for multilingual learning, particularly in the context of text summarization. Specifically, we explore the relative advantages of three families of multilingual tuning strategies (a total of five models) and empirically evaluate them for summarization over 45 languages. Experimentally, we not only established a new state-of-the-art on the XL-Sum dataset but also derive a series of observations that hopefully can provide hints for future research on the design of multilingual tuning strategies.
translated by 谷歌翻译
在本文中,我们利用了以前的预训练模型(PTM)的优势,并提出了一种新型的中国预训练的不平衡变压器(CPT)。与以前的中国PTM不同,CPT旨在利用自然语言理解(NLU)和自然语言生成(NLG)之间的共同知识来促进表现。 CPT包括三个部分:共享编码器,一个理解解码器和一代解码器。具有共享编码器的两个特定解码器分别通过蒙版语言建模(MLM)进行了预训练,并分别将自动编码(DAE)任务进行了验证。借助部分共享的体系结构和多任务预培训,CPT可以(1)使用两个解码器学习NLU或NLG任务的特定知识,并且(2)对模型的潜力充分利用了微调。此外,不平衡的变压器节省了计算和存储成本,这使CPT竞争激烈,并极大地加速了文本生成的推断。对各种中国NLU和NLG任务的实验结果显示了CPT的有效性。
translated by 谷歌翻译