We propose focal modulation networks (FocalNets in short), where self-attention (SA) is completely replaced by a focal modulation mechanism for modeling token interactions in vision. Focal modulation comprises three components: (i) hierarchical contextualization, implemented using a stack of depth-wise convolutional layers, to encode visual contexts from short to long ranges, (ii) gated aggregation to selectively gather contexts for each query token based on its content, and (iii) element-wise modulation or affine transformation to inject the aggregated context into the query. Extensive experiments show FocalNets outperform the state-of-the-art SA counterparts (e.g., Swin and Focal Transformers) with similar computational costs on the tasks of image classification, object detection, and segmentation. Specifically, FocalNets with tiny and base size achieve 82.3% and 83.9% top-1 accuracy on ImageNet-1K. After pretrained on ImageNet-22K in 224 resolution, it attains 86.5% and 87.3% top-1 accuracy when finetuned with resolution 224 and 384, respectively. When transferred to downstream tasks, FocalNets exhibit clear superiority. For object detection with Mask R-CNN, FocalNet base trained with 1\times outperforms the Swin counterpart by 2.1 points and already surpasses Swin trained with 3\times schedule (49.0 v.s. 48.5). For semantic segmentation with UPerNet, FocalNet base at single-scale outperforms Swin by 2.4, and beats Swin at multi-scale (50.5 v.s. 49.7). Using large FocalNet and Mask2former, we achieve 58.5 mIoU for ADE20K semantic segmentation, and 57.9 PQ for COCO Panoptic Segmentation. Using huge FocalNet and DINO, we achieved 64.3 and 64.4 mAP on COCO minival and test-dev, respectively, establishing new SoTA on top of much larger attention-based models like Swinv2-G and BEIT-3. Code and checkpoints are available at https://github.com/microsoft/FocalNet.
translated by 谷歌翻译
诸如对象检测和分割等密集的计算机视觉任务需要有效的多尺度特征表示,用于检测或分类具有不同大小的对象或区域。虽然卷积神经网络(CNNS)是这种任务的主导架构,但最近引入了视觉变压器(VITS)的目标是将它们替换为骨干。类似于CNN,VITS构建一个简单的多级结构(即,细致粗略),用于使用单尺度补丁进行多尺度表示。在这项工作中,通过从现有变压器的不同角度来看,我们探索了多尺度补丁嵌入和多路径结构,构建了多路径视觉变压器(MPVIT)。 MPVIT通过使用重叠的卷积贴片嵌入,将相同尺寸〜(即,序列长度,序列长度,序列长度的序列长度)嵌入不同尺度的斑块。然后,通过多个路径独立地将不同尺度的令牌独立地馈送到变压器编码器,并且可以聚合产生的特征,使得能够在相同特征级别的精细和粗糙的特征表示。由于多样化,多尺寸特征表示,我们的MPVits从微小〜(5m)缩放到基础〜(73米)一直在想象成分,对象检测,实例分段上的最先进的视觉变压器来实现卓越的性能,和语义细分。这些广泛的结果表明,MPVIT可以作为各种视觉任务的多功能骨干网。代码将在\ url {https://git.io/mpvit}上公开可用。
translated by 谷歌翻译
视觉变压器的最新进展在基于点产生自我注意的新空间建模机制驱动的各种任务中取得了巨大成功。在本文中,我们表明,视觉变压器背后的关键要素,即输入自适应,远程和高阶空间相互作用,也可以通过基于卷积的框架有效地实现。我们介绍了递归封闭式卷积($ \ textit {g}^\ textit {n} $ conv),该卷积{n} $ conv)与封闭的卷积和递归设计执行高阶空间交互。新操作是高度灵活和可定制的,它与卷积的各种变体兼容,并将自我注意的两阶相互作用扩展到任意订单,而无需引入大量额外的计算。 $ \ textit {g}^\ textit {n} $ conv可以用作插件模块,以改善各种视觉变压器和基于卷积的模型。根据该操作,我们构建了一个名为Hornet的新型通用视觉骨干家族。关于ImageNet分类,可可对象检测和ADE20K语义分割的广泛实验表明,大黄蜂的表现优于Swin变形金刚,并具有相似的整体体系结构和训练配置的明显边距。大黄蜂还显示出对更多训练数据和更大模型大小的有利可伸缩性。除了在视觉编码器中的有效性外,我们还可以将$ \ textit {g}^\ textit {n} $ conv应用于特定于任务的解码器,并始终通过较少的计算来提高密集的预测性能。我们的结果表明,$ \ textIt {g}^\ textit {n} $ conv可以成为视觉建模的新基本模块,可有效结合视觉变形金刚和CNN的优点。代码可从https://github.com/raoyongming/hornet获得
translated by 谷歌翻译
我们提出了全球环境视觉变压器(GC VIT),这是一种新的结构,可增强参数和计算利用率。我们的方法利用了与本地自我注意的联合的全球自我发项模块,以有效但有效地建模长和短距离的空间相互作用,而无需昂贵的操作,例如计算注意力面罩或移动本地窗户。此外,我们通过建议在我们的体系结构中使用修改后的融合倒置残差块来解决VIT中缺乏归纳偏差的问题。我们提出的GC VIT在图像分类,对象检测和语义分割任务中实现了最新的结果。在用于分类的ImagEnet-1k数据集上,基本,小而微小的GC VIT,$ 28 $ M,$ 51 $ M和$ 90 $ M参数实现$ \ textbf {83.2 \%} $,$ \ textbf {83.9 \%} $和$ \ textbf {84.4 \%} $ top-1的精度,超过了相当大的先前艺术,例如基于CNN的Convnext和基于VIT的Swin Transformer,其优势大大。在对象检测,实例分割和使用MS Coco和ADE20K数据集的下游任务中,预训练的GC VIT主机在对象检测,实例分割和语义分割的任务中始终如一地超过事务,有时是通过大余量。可在https://github.com/nvlabs/gcvit上获得代码。
translated by 谷歌翻译
近期视觉变压器〜(VIT)模型在各种计算机视觉任务中展示了令人鼓舞的结果,因为他们的竞争力通过自我关注建模图像补丁或令牌的长距离依赖性。然而,这些模型通常指定每层中每个令牌特征的类似场景。这种约束不可避免地限制了每个自我注意层在捕获多尺度特征中的能力,从而导致处理具有不同尺度的多个对象的图像的性能下降。为了解决这个问题,我们提出了一种新颖和通用的策略,称为分流的自我关注〜(SSA),它允许VITS为每个关注层的混合秤的关注进行模拟。 SSA的关键概念是将异构接收领域的尺寸注入令牌:在计算自我注意矩阵之前,它选择性地合并令牌以表示较大的对象特征,同时保持某些令牌以保持细粒度的特征。这种新颖的合并方案能够自我注意,以了解具有不同大小的对象之间的关系,并同时降低令牌数字和计算成本。各种任务的广泛实验表明了SSA的优越性。具体而言,基于SSA的变压器实现了84.0 \%的前1个精度,并且在ImageNet上占据了最先进的焦距变压器,只有一半的模型尺寸和计算成本,并且在Coco上超过了焦点变压器1.3映射2.9 MIOU在ADE20K上类似参数和计算成本。代码已在https://github.com/oliverrensu/shunted-transformer发布。
translated by 谷歌翻译
变形金刚迅速成为跨模式,域和任务的最深入学习架构之一。在视觉上,除了对普通变压器的持续努力外,层次变压器还引起了人们的重大关注,这要归功于它们的性能和轻松整合到现有框架中。这些模型通常采用局部注意机制,例如滑动窗口社区的注意力(NA)或Swin Transformer转移的窗户自我关注。尽管有效地降低了自我注意力的二次复杂性,但局部注意力却削弱了自我注意力最理想的两个特性:远距离相互依赖性建模和全球接受场。在本文中,我们引入了扩张的邻里注意力(DINA),这是NA的天然,灵活和有效的扩展,可以捕获更多的全球环境,并以无需额外的成本呈指数级扩展接受场。 NA的本地关注和Dina的稀疏全球关注相互补充,因此我们引入了扩张的邻里注意力变压器(Dinat),这是一种新的分层视觉变压器。 Dinat变体对基于注意的基线(例如NAT和SWIN)以及现代卷积基线Convnext都具有重大改进。我们的大型模型在可可对象检测中以1.5%的盒子AP领先于其在COCO物体检测中,1.3%的掩码AP在可可实例分段中,而ADE20K语义分段中的1.1%MIOU和更快的吞吐量。我们认为,NA和Dina的组合有可能增强本文提出的各种任务的能力。为了支持和鼓励朝着这个方向,远见和超越方向进行研究,我们在以下网址开放我们的项目:https://github.com/shi-labs/neighborhood-cithention-transformer。
translated by 谷歌翻译
香草自我注意的机制固有地依赖于预定和坚定的计算维度。这种僵化的性限制了它具有面向上下文的概括,可以带来更多的上下文提示和全球表示。为了减轻此问题,我们提出了一种可扩展的自我注意(SSA)机制,该机制利用两个缩放因素来释放查询,键和价值矩阵的维度,同时使它们不符合输入。这种可伸缩性可获得面向上下文的概括并增强对象灵敏度,从而将整个网络推向准确性和成本之间的更有效的权衡状态。此外,我们提出了一个基于窗口的自我注意事项(IWSA),该自我注意力(IWSA)通过重新合并独立的值代币并从相邻窗口中汇总空间信息来建立非重叠区域之间的相互作用。通过交替堆叠SSA和IWSA,可扩展的视觉变压器(可伸缩率)在通用视觉任务中实现最先进的性能。例如,在Imagenet-1K分类中,可伸缩率S的表现优于双胞胎-SVT-S,而Swin-T则比1.4%。
translated by 谷歌翻译
变压器最近在各种视觉任务上表现出卓越的性能。大型有时甚至全球,接收领域赋予变换器模型,并通过其CNN对应物具有更高的表示功率。然而,简单地扩大接收领域也产生了几个问题。一方面,使用致密的注意,例如,在VIT中,导致过度的记忆和计算成本,并且特征可以受到超出兴趣区域的无关紧要的影响。另一方面,PVT或SWIN变压器采用的稀疏注意是数据不可知论,可能会限制模拟长距离关系的能力。为了缓解这些问题,我们提出了一种新型可变形的自我关注模块,其中以数据相关的方式选择密钥和值对中的密钥和值对的位置。这种灵活的方案使自我关注模块能够专注于相关区域并捕获更多的信息性功能。在此基础上,我们呈现可变形的关注变压器,一般骨干模型,具有可变形关注的图像分类和密集预测任务。广泛的实验表明,我们的模型在综合基准上实现了一致的改善结果。代码可在https://github.com/leaplabthu/dat上获得。
translated by 谷歌翻译
视觉表示学习是解决各种视力问题的关键。依靠开创性的网格结构先验,卷积神经网络(CNN)已成为大多数深视觉模型的事实上的标准架构。例如,经典的语义分割方法通常采用带有编码器编码器体系结构的完全横向卷积网络(FCN)。编码器逐渐减少了空间分辨率,并通过更大的接受场来学习更多抽象的视觉概念。由于上下文建模对于分割至关重要,因此最新的努力一直集中在通过扩张(即极度)卷积或插入注意力模块来增加接受场。但是,基于FCN的体系结构保持不变。在本文中,我们旨在通过将视觉表示学习作为序列到序列预测任务来提供替代观点。具体而言,我们部署纯变压器以将图像编码为一系列贴片,而无需局部卷积和分辨率减少。通过在变压器的每一层中建立的全球环境,可以学习更强大的视觉表示形式,以更好地解决视力任务。特别是,我们的细分模型(称为分割变压器(SETR))在ADE20K上擅长(50.28%MIOU,这是提交当天测试排行榜中的第一个位置),Pascal环境(55.83%MIOU),并在CityScapes上达到竞争成果。此外,我们制定了一个分层局部全球(HLG)变压器的家族,其特征是窗户内的本地关注和跨窗户的全球性专注于层次结构和金字塔架构。广泛的实验表明,我们的方法在各种视觉识别任务(例如,图像分类,对象检测和实例分割和语义分割)上实现了吸引力的性能。
translated by 谷歌翻译
Very recently, a variety of vision transformer architectures for dense prediction tasks have been proposed and they show that the design of spatial attention is critical to their success in these tasks. In this work, we revisit the design of the spatial attention and demonstrate that a carefully devised yet simple spatial attention mechanism performs favorably against the state-of-the-art schemes. As a result, we propose two vision transformer architectures, namely, Twins-PCPVT and Twins-SVT. Our proposed architectures are highly efficient and easy to implement, only involving matrix multiplications that are highly optimized in modern deep learning frameworks. More importantly, the proposed architectures achieve excellent performance on a wide range of visual tasks including image-level classification as well as dense detection and segmentation. The simplicity and strong performance suggest that our proposed architectures may serve as stronger backbones for many vision tasks. Our Code is available at: https://git.io/Twins.
translated by 谷歌翻译
先前的视觉MLP,如MLP-MILER和RESMLP接受线性扁平的图像贴片作为输入,使其对不同的输入大小和难以捕获空间信息。这种方法隐瞒了MLP与基于变压器的对应物相比,并防止它们成为计算机视觉的一般骨干。本文介绍了Hire-MLP,通过\ TextBF {Hi} reachical \ TextBF {Re}排列,这是一个简单而竞争的愿景MLP架构,其中包含两个重排级别。具体地,提出内部区域重新排列以捕获空间区域内的局部信息,并且提出横区域重新排列以使不同区域之间的信息通信能够通过沿空间方向循环地转换所有令牌来实现不同区域之间的信息通信。广泛的实验证明了Hire-MLP作为各种视觉任务的多功能骨干的有效性。特别是,Hire-MLP在图像分类,对象检测和语义分割任务上实现竞争结果,例如,在Imagenet上的83.8%的前1个精度,51.7%盒AP和Coco Val2017上的44.8%掩模AP和Ade20k上的49.9%Miou ,超越以前的基于变压器和基于MLP的型号,具有更好的折衷以获得准确性和吞吐量。代码可在https://github.com/ggjy/hire-wave-mlp.pytorch获得。
translated by 谷歌翻译
Since the recent success of Vision Transformers (ViTs), explorations toward transformer-style architectures have triggered the resurgence of modern ConvNets. In this work, we explore the representation ability of DNNs through the lens of interaction complexities. We empirically show that interaction complexity is an overlooked but essential indicator for visual recognition. Accordingly, a new family of efficient ConvNets, named MogaNet, is presented to pursue informative context mining in pure ConvNet-based models, with preferable complexity-performance trade-offs. In MogaNet, interactions across multiple complexities are facilitated and contextualized by leveraging two specially designed aggregation blocks in both spatial and channel interaction spaces. Extensive studies are conducted on ImageNet classification, COCO object detection, and ADE20K semantic segmentation tasks. The results demonstrate that our MogaNet establishes new state-of-the-art over other popular methods in mainstream scenarios and all model scales. Typically, the lightweight MogaNet-T achieves 80.0\% top-1 accuracy with only 1.44G FLOPs using a refined training setup on ImageNet-1K, surpassing ParC-Net-S by 1.4\% accuracy but saving 59\% (2.04G) FLOPs.
translated by 谷歌翻译
我们介绍克斯内变压器,一种高效且有效的变压器的骨干,用于通用视觉任务。变压器设计的具有挑战性的问题是,全球自我关注来计算成本昂贵,而局部自我关注经常限制每个令牌的相互作用。为了解决这个问题,我们开发了以平行的横向和垂直条纹在水平和垂直条纹中计算自我关注的交叉形窗口自我关注机制,通过将输入特征分成相等的条纹而获得的每个条纹宽度。我们提供了条纹宽度效果的数学分析,并改变变压器网络的不同层的条纹宽度,这在限制计算成本时实现了强大的建模能力。我们还介绍了本地增强的位置编码(LEPE),比现有的编码方案更好地处理本地位置信息。 LEPE自然支持任意输入分辨率,因此对下游任务特别有效和友好。 CSWIN变压器并入其具有这些设计和分层结构,展示了普通愿景任务的竞争性能。具体来说,它在ImageNet-1K上实现了85.4 \%Top-1精度,而无需任何额外的培训数据或标签,53.9盒AP和46.4掩模AP,ADE20K语义分割任务上的52.2 Miou,超过以前的状态 - 在类似的拖鞋设置下,艺术品+1.2,+2.0,+1.4和+2.0分别为+1.2,+2.0,+1.4和+2.0。通过在较大的数据集Imagenet-21k上进行前预先预订,我们在Ave20K上实现了87.5%的成像-1K和高分性能,55.7 miou。代码和模型可在https://github.com/microsoft/cswin-transformer中找到。
translated by 谷歌翻译
最近,视觉变压器(VIT),具有自我关注(SA)作为事实上的成分,在计算机视觉社区中表现出很大的潜力。为了在效率和性能之间进行权衡,一组作品仅仅在本地补丁中执行SA操作,而全局上下文信息被放弃,这对于可视识别任务是不可或缺的。为了解决这个问题,随后的全球本地VITS在模型中以并行或替代方式将本地SA与全球范围内纳入本地SA。然而,令人遗憾地组合的局部和全局上下文可能存在各种视觉数据的冗余,并且每个层内的接收场是固定的。或者,更优雅的方式是全局和本地上下文可以自适应地贡献本身以适应不同的视觉数据。为实现这一目标,我们本文提出了一种新的Vit架构,称为NOMMER,可以动态提名视觉变压器中的协同全球本地背景。通过调查我们提出的NOMMER的工作模式,我们进一步探讨了哪些上下文信息。有益于这种“动态提名”机制,没有钟声和吹口哨,不仅可以在Imagenet上达到84.5%的前1个分类准确性,只有73米的参数,也显示了对致密预测任务的有希望的性能,即对象检测和语义分割。代码和模型将在〜\ url {https://github.com/nommer1125/nommer中公开可用。
translated by 谷歌翻译
虽然最初是为自然语言处理任务而设计的,但自我发挥的机制最近逐渐席卷了各种计算机视觉领域。但是,图像的2D性质带来了在计算机视觉中应用自我注意力的三个挑战。 (1)将图像作为1D序列忽略了其2D结构。 (2)对于高分辨率图像而言,二次复杂性太贵了。 (3)它仅捕获空间适应性,但忽略了通道适应性。在本文中,我们提出了一种新颖的线性注意力,名为“大核心注意”(LKA),以使自适应和远程相关性在自我注意力中避免其缺点。此外,我们提出了基于LKA的神经网络,即视觉注意力网络(VAN)。虽然非常简单,但范超过了相似的大小视觉变压器(VIT)和各种任务中的卷积神经网络(CNN),包括图像分类,对象检测,语义细分,泛型分割,姿势估计等。 ImageNet基准测试的精度为%,并为全景分割设置新的最先进性能(58.2 PQ)。此外,Van-B2超过Sw​​in-T 4%MIOU(50.1 vs. 46.1),用于ADE20K基准上的语义分割,2.6%AP(48.8 vs. 46.2)在COCO数据集上进行对象检测。它为社区提供了一种新颖的方法和简单而强大的基线。代码可从https://github.com/visual-crestention-network获得。
translated by 谷歌翻译
本文解决了由多头自我注意力(MHSA)中高计算/空间复杂性引起的视觉变压器的低效率缺陷。为此,我们提出了层次MHSA(H-MHSA),其表示以层次方式计算。具体而言,我们首先将输入图像分为通常完成的补丁,每个补丁都被视为令牌。然后,拟议的H-MHSA学习本地贴片中的令牌关系,作为局部关系建模。然后,将小贴片合并为较大的贴片,H-MHSA对少量合并令牌的全局依赖性建模。最后,汇总了本地和全球专注的功能,以获得具有强大表示能力的功能。由于我们仅在每个步骤中计算有限数量的令牌的注意力,因此大大减少了计算负载。因此,H-MHSA可以在不牺牲细粒度信息的情况下有效地模拟令牌之间的全局关系。使用H-MHSA模块合并,我们建立了一个基于层次的变压器网络的家族,即HAT-NET。为了证明在场景理解中HAT-NET的优越性,我们就基本视觉任务进行了广泛的实验,包括图像分类,语义分割,对象检测和实例细分。因此,HAT-NET为视觉变压器提供了新的视角。可以在https://github.com/yun-liu/hat-net上获得代码和预估计的模型。
translated by 谷歌翻译
视觉变压器(VIT)用作强大的视觉模型。与卷积神经网络不同,在前几年主导视觉研究,视觉变压器享有捕获数据中的远程依赖性的能力。尽管如此,任何变压器架构的组成部分,自我关注机制都存在高延迟和低效的内存利用,使其不太适合高分辨率输入图像。为了缓解这些缺点,分层视觉模型在非交错的窗口上局部使用自我关注。这种放松会降低输入尺寸的复杂性;但是,它限制了横窗相互作用,损害了模型性能。在本文中,我们提出了一种新的班次不变的本地注意层,称为查询和参加(QNA),其以重叠的方式聚集在本地输入,非常类似于卷积。 QNA背后的关键想法是介绍学习的查询,这允许快速高效地实现。我们通过将其纳入分层视觉变压器模型来验证我们的层的有效性。我们展示了速度和内存复杂性的改进,同时实现了与最先进的模型的可比准确性。最后,我们的图层尺寸尤其良好,窗口大小,需要高于X10的内存,而不是比现有方法更快。
translated by 谷歌翻译
视觉识别的“咆哮20S”开始引入视觉变压器(VITS),这将被取代的Cummnets作为最先进的图像分类模型。另一方面,vanilla vit,当应用于一般计算机视觉任务等对象检测和语义分割时面临困难。它是重新引入多个ConvNet Priors的等级变压器(例如,Swin变压器),使变压器实际上可作为通用视觉骨干网,并在各种视觉任务上展示了显着性能。然而,这种混合方法的有效性仍然在很大程度上归功于变压器的内在优越性,而不是卷积的固有感应偏差。在这项工作中,我们重新审视设计空间并测试纯粹的Convnet可以实现的限制。我们逐渐“现代化”标准Reset朝着视觉变压器的设计设计,并发现几个有助于沿途绩效差异的关键组件。此探索的结果是一个纯粹的ConvNet型号被称为ConvNext。完全由标准的Convnet模块构建,ConvNexts在准确性和可扩展性方面与变压器竞争,实现了87.8%的ImageNet Top-1精度和表现优于COCO检测和ADE20K分割的Swin变压器,同时保持了标准Convnet的简单性和效率。
translated by 谷歌翻译
The three existing dominant network families, i.e., CNNs, Transformers, and MLPs, differ from each other mainly in the ways of fusing spatial contextual information, leaving designing more effective token-mixing mechanisms at the core of backbone architecture development. In this work, we propose an innovative token-mixer, dubbed Active Token Mixer (ATM), to actively incorporate flexible contextual information distributed across different channels from other tokens into the given query token. This fundamental operator actively predicts where to capture useful contexts and learns how to fuse the captured contexts with the query token at channel level. In this way, the spatial range of token-mixing can be expanded to a global scope with limited computational complexity, where the way of token-mixing is reformed. We take ATM as the primary operator and assemble ATMs into a cascade architecture, dubbed ATMNet. Extensive experiments demonstrate that ATMNet is generally applicable and comprehensively surpasses different families of SOTA vision backbones by a clear margin on a broad range of vision tasks, including visual recognition and dense prediction tasks. Code is available at https://github.com/microsoft/ActiveMLP.
translated by 谷歌翻译
视觉变压器(VIT)触发了计算机视觉的最新和重大突破。它们的有效设计主要由计算复杂性的间接度量(即拖船)指导,但是,该指标与直接度量(例如吞吐量)具有明显的差距。因此,我们建议将目标平台上的直接速度评估作为有效VIT的设计原理。特别是,我们介绍了LITV2,这是一种简单有效的VIT,可与以更快的速度更快的不同模型大小相对现有的最新方法。 LITV2的核心是一种新型的自我发项机制,我们将其配音。希洛的灵感来自于洞察力的启发:图像中的高频捕获本地细节和低频集中在全球结构上,而多头自发项层则忽略了不同频率的特征。因此,我们建议通过将头部分为两组来解散注意力层中的高/低频模式,其中一组在每个本地窗口内通过自我关注来编码高频,而另一组则执行注意力以模拟全局关系。在每个窗口的平均低频键与输入功能图中的每个查询位置之间。从两组的有效设计中受益,我们表明希洛通过对GPU上的速度,速度和记忆消耗进行了全面测试,优于现有的注意机制。 LITV2由Hilo提供支持,是主流视觉任务的强大主链,包括图像分类,密集检测和分割。代码可从https://github.com/ziplab/litv2获得。
translated by 谷歌翻译