In recent hyperspectral unmixing (HU) literature, the application of deep learning (DL) has become more prominent, especially with the autoencoder (AE) architecture. We propose a split architecture and use a pseudo-ground truth for abundances to guide the `unmixing network' (UN) optimization. Preceding the UN, an `approximation network' (AN) is proposed, which will improve the association between the centre pixel and its neighbourhood. Hence, it will accentuate spatial correlation in the abundances as its output is the input to the UN and the reference for the `mixing network' (MN). In the Guided Encoder-Decoder Architecture for Hyperspectral Unmixing with Spatial Smoothness (GAUSS), we proposed using one-hot encoded abundances as the pseudo-ground truth to guide the UN; computed using the k-means algorithm to exclude the use of prior HU methods. Furthermore, we release the single-layer constraint on MN by introducing the UN generated abundances in contrast to the standard AE for HU. Secondly, we experimented with two modifications on the pre-trained network using the GAUSS method. In GAUSS$_\textit{blind}$, we have concatenated the UN and the MN to back-propagate the reconstruction error gradients to the encoder. Then, in the GAUSS$_\textit{prime}$, abundance results of a signal processing (SP) method with reliable abundance results were used as the pseudo-ground truth with the GAUSS architecture. According to quantitative and graphical results for four experimental datasets, the three architectures either transcended or equated the performance of existing HU algorithms from both DL and SP domains.
translated by 谷歌翻译
在本文中,我们引入了一种新算法,该算法基于原型分析,用于假设末日成员的线性混合,用于盲目的高光谱脉冲。原型分析是该任务的自然表述。该方法不需要存在纯像素(即包含单个材料的像素),而是将末端成员表示为原始高光谱图像中几个像素的凸组合。我们的方法利用了熵梯度下降策略,(i)比传统的原型分析算法为高光谱脉冲提供更好的解决方案,并且(ii)导致有效的GPU实现。由于运行我们算法的单个实例很快,我们还提出了一个结合机制以及适当的模型选择程序,该过程使我们的方法可鲁棒性到超参数选择,同时保持计算复杂性合理。通过使用六个标准的真实数据集,我们表明我们的方法的表现优于最先进的矩阵分解和最新的深度学习方法。我们还提供开源pytorch实施:https://github.com/inria-thoth/edaa。
translated by 谷歌翻译
Hyperspectral pixel intensities result from a mixing of reflectances from several materials. This paper develops a method of hyperspectral pixel unmixing that aims to recover the "pure" spectral signal of each material (hereafter referred to as endmembers) together with the mixing ratios (abundances) given the spectrum of a single pixel. The unmixing problem is particularly relevant in the case of low-resolution hyperspectral images captured in a remote sensing setting, where individual pixels can cover large regions of the scene. Under the assumptions that (1) a multivariate Normal distribution can represent the spectra of an endmember and (2) a Dirichlet distribution can encode abundances of different endmembers, we develop a Latent Dirichlet Variational Autoencoder for hyperspectral pixel unmixing. Our approach achieves state-of-the-art results on standard benchmarks and on synthetic data generated using United States Geological Survey spectral library.
translated by 谷歌翻译
高光谱成像由于其在捕获丰富的空间和光谱信息的能力上提供了多功能应用,这对于识别物质至关重要。但是,获取高光谱图像的设备昂贵且复杂。因此,已经通过直接从低成本,更多可用的RGB图像重建高光谱信息来提出了许多替代光谱成像方法。我们详细研究了来自广泛的RGB图像的这些最先进的光谱重建方法。对25种方法的系统研究和比较表明,尽管速度较低,但大多数数据驱动的深度学习方法在重建精度和质量方面都优于先前的方法。这项全面的审查可以成为同伴研究人员的富有成果的参考来源,从而进一步启发了相关领域的未来发展方向。
translated by 谷歌翻译
This paper proposes a non-data-driven deep neural network for spectral image recovery problems such as denoising, single hyperspectral image super-resolution, and compressive spectral imaging reconstruction. Unlike previous methods, the proposed approach, dubbed Mixture-Net, implicitly learns the prior information through the network. Mixture-Net consists of a deep generative model whose layers are inspired by the linear and non-linear low-rank mixture models, where the recovered image is composed of a weighted sum between the linear and non-linear decomposition. Mixture-Net also provides a low-rank decomposition interpreted as the spectral image abundances and endmembers, helpful in achieving remote sensing tasks without running additional routines. The experiments show the MixtureNet effectiveness outperforming state-of-the-art methods in recovery quality with the advantage of architecture interpretability.
translated by 谷歌翻译
光谱超分辨率(SSR)是指从RGB对应物中恢复的高光谱图像(HSI)。由于SSR问题的一对多性,可以将单个RGB图像恢复到许多HSIS。解决这个暗示问题的关键是插入多源以前的信息,如自然RGB空间上下文的上下文,深度特征或固有的HSI统计事先等,以提高重建的置信度和保真度光谱。然而,大多数目前的方法只考虑设计定制的卷积神经网络(CNN)的一般和有限的前瞻,这导致无法有效地减轻不良程度。为解决有问题的问题,我们为SSR提出了一个新颖的全面的先前嵌入关系网络(HPRN)。基本上,核心框架由几个多剩余关系块(MRB)进行多种组装,其完全便于RGB信号之前的低频内容的传输和利用。创新性地,引入了RGB输入的语义之前,以识别类别属性,并且向前提出了语义驱动的空间关系模块(SSRM)以使用语义嵌入关系矩阵在聚类的类似特征之间执行特征聚合。此外,我们开发了一种基于变换器的通道关系模块(TCRM),其习惯使用标量作为先前深度特征中的频道方面关系的描述符,并用某些向量替换为变换器特征交互,支持表示更加歧视。为了保持高光谱频带之间的数学相关和光谱一致性,将二阶的先前约束(SOPC)结合到丢失功能中以引导HSI重建过程。
translated by 谷歌翻译
由于技术成本的降低和卫星发射的增加,卫星图像变得越来越流行和更容易获得。除了提供仁慈的目的外,还可以出于恶意原因(例如错误信息)使用卫星数据。事实上,可以依靠一般图像编辑工具来轻松操纵卫星图像。此外,随着深层神经网络(DNN)的激增,可以生成属于各种领域的现实合成图像,与合成生成的卫星图像的扩散有关的其他威胁正在出现。在本文中,我们回顾了关于卫星图像的产生和操纵的最新技术(SOTA)。特别是,我们既关注从头开始的合成卫星图像的产生,又要通过图像转移技术对卫星图像进行语义操纵,包括从一种类型的传感器到另一种传感器获得的图像的转换。我们还描述了迄今已研究的法医检测技术,以对合成图像伪造进行分类和检测。虽然我们主要集中在法医技术上明确定制的,该技术是针对AI生成的合成内容物的检测,但我们还审查了一些用于一般剪接检测的方法,这些方法原则上也可以用于发现AI操纵图像
translated by 谷歌翻译
本文解决了高光谱(HS)图像denoising的具有挑战性的问题。与现有的基于深度学习的方法不同,通常采用复杂的网络体系结构或经验堆叠现成的模块以提高性能,我们专注于捕获HS图像的高维特性的高效提取方式。具体来说,基于理论分析,提高由展开的卷积内核形成的矩阵的排名可以促进特征多样性,我们建议分别执行1卷卷积的降级低维卷积集(Re-Convset)沿着HS图像并排的三个维度,然后通过可学习的压缩层汇总所得的空间光谱嵌入。重新汇率不仅了解HS图像的不同空间光谱特征,而且还降低了网络的参数和复杂性。然后,我们将重新汇合纳入广泛使用的U-NET体系结构中,以构建HS图像Denoisising方法。令人惊讶的是,在定量指标,视觉结果和效率方面,我们观察到这样的简洁框架在很大程度上优于最新方法。我们相信我们的工作可能会阐明基于深度学习的HS图像处理和分析。
translated by 谷歌翻译
深度学习模型是压缩光谱成像(CSI)恢复的最新模型。这些方法使用深神网络(DNN)作为图像发生器来学习从压缩测量到光谱图像的非线性映射。例如,深频谱先验方法在优化算法中使用卷积自动编码器网络(CAE)通过使用非线性表示来恢复光谱图像。但是,CAE训练与恢复问题分离,这不能保证CSI问题的光谱图像的最佳表示。这项工作提出了联合非线性表示和恢复网络(JR2NET),将表示和恢复任务链接到单个优化问题。 JR2NET由ADMM公式遵循优化启发的网络组成,该网络学习了非线性低维表示,并同时执行通过端到端方法训练的光谱图像恢复。实验结果表明,该方法的优势在PSNR中的改进高达2.57 dB,并且性能比最新方法快2000倍。
translated by 谷歌翻译
Deconvolution is a widely used strategy to mitigate the blurring and noisy degradation of hyperspectral images~(HSI) generated by the acquisition devices. This issue is usually addressed by solving an ill-posed inverse problem. While investigating proper image priors can enhance the deconvolution performance, it is not trivial to handcraft a powerful regularizer and to set the regularization parameters. To address these issues, in this paper we introduce a tuning-free Plug-and-Play (PnP) algorithm for HSI deconvolution. Specifically, we use the alternating direction method of multipliers (ADMM) to decompose the optimization problem into two iterative sub-problems. A flexible blind 3D denoising network (B3DDN) is designed to learn deep priors and to solve the denoising sub-problem with different noise levels. A measure of 3D residual whiteness is then investigated to adjust the penalty parameters when solving the quadratic sub-problems, as well as a stopping criterion. Experimental results on both simulated and real-world data with ground-truth demonstrate the superiority of the proposed method.
translated by 谷歌翻译
The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning.
translated by 谷歌翻译
Deep neural networks provide unprecedented performance gains in many real world problems in signal and image processing. Despite these gains, future development and practical deployment of deep networks is hindered by their blackbox nature, i.e., lack of interpretability, and by the need for very large training sets. An emerging technique called algorithm unrolling or unfolding offers promise in eliminating these issues by providing a concrete and systematic connection between iterative algorithms that are used widely in signal processing and deep neural networks. Unrolling methods were first proposed to develop fast neural network approximations for sparse coding. More recently, this direction has attracted enormous attention and is rapidly growing both in theoretic investigations and practical applications. The growing popularity of unrolled deep networks is due in part to their potential in developing efficient, high-performance and yet interpretable network architectures from reasonable size training sets. In this article, we review algorithm unrolling for signal and image processing. We extensively cover popular techniques for algorithm unrolling in various domains of signal and image processing including imaging, vision and recognition, and speech processing. By reviewing previous works, we reveal the connections between iterative algorithms and neural networks and present recent theoretical results. Finally, we provide a discussion on current limitations of unrolling and suggest possible future research directions.
translated by 谷歌翻译
在本文中,我们提出了一种用于HSI去噪的强大主成分分析的新型非耦合方法,其侧重于分别同时为低级和稀疏组分的等级和列方向稀疏性产生更准确的近似。特别是,新方法采用日志确定级别近似和新颖的$ \ ell_ {2,\ log} $常规,以便分别限制组件矩阵的本地低级或列明智地稀疏属性。对于$ \ ell_ {2,\ log} $ - 正常化的收缩问题,我们开发了一个高效的封闭式解决方案,该解决方案名为$ \ ell_ {2,\ log} $ - 收缩运算符。新的正则化和相应的操作员通常可以用于需要列明显稀疏性的其他问题。此外,我们在基于日志的非凸rpca模型中强加了空间光谱总变化正则化,这增强了从恢复的HSI中的空间和光谱视图中的全局转换平滑度和光谱一致性。关于模拟和实际HSIS的广泛实验证明了所提出的方法在去噪HSIS中的有效性。
translated by 谷歌翻译
基于深度学习(DL)的高光谱图像(HSIS)去噪方法直接学习观察到的嘈杂图像和底层清洁图像之间的非线性映射。他们通常不考虑HSIS的物理特征,因此使他们缺乏了解他们的去噪机制的关键。为了解决这个问题,我们为HSI去噪提出了一种新颖的模型指导可解释网络。具体而言,完全考虑HSI的空间冗余,光谱低秩和光谱空间特性,我们首先建立基于子空间的多维稀疏模型。该模型首先将观察到的HSIS投入到低维正交子空间,然后表示具有多维字典的投影图像。之后,该模型展开到名为SMDS-Net的端到端网络中,其基本模块与模型的去噪程序无缝连接。这使得SMDS-Net传达清晰的物理意义,即学习HSIS的低级别和稀疏性。最后,通过端到端培训获得包括词典和阈值处理的所有关键变量。广泛的实验和综合分析证实了我们对最先进的HSI去噪方法的方法的去噪能力和可解释性。
translated by 谷歌翻译
特征在于巨大的光谱信息,高光谱图像能够检测微妙的变化,并区分各种变化等级以进行变化检测。然而,最近由高光谱二进制变更检测的研究工作不能提供精细的变化课程信息。并且大多数包含用于高光谱多字母变化检测(HMCD)的光谱解密的方法,但忽略了时间相关性和误差累积。在这项研究中,我们提出了一种无监督的二进制变化,用于HMCD的无监督二进制变更导向的高光谱多种子变化检测网络(BCG-Net),其旨在通过成熟二进制改变检测方法提升多种子变化检测结果和解密结果。在BCG-Net中,专为多时间谱解密而设计了一种新型的部分暹罗联合式解密模块,并且开发了由二元变化检测结果的伪标签指导的突破性的时间相关约束,从透视中引导未混合过程变化检测,鼓励不变的像素的丰富更接合,并且改变像素更准确。此外,提出了一种创新的二进制变更检测规则来处理传统规则易受数值的问题。提出了频谱解压过程的迭代优化和变化检测过程,以消除来自解密结果的累积误差和偏置以改变检测结果。实验结果表明,我们所提出的BCG-Net可以在最先进的方法中实现多种多数变化检测的比较甚至出色的性能,并同时获得更好的光谱解密结果。
translated by 谷歌翻译
传统上,本征成像或内在图像分解被描述为将图像分解为两层:反射率,材料的反射率;和一个阴影,由光和几何之间的相互作用产生。近年来,深入学习技术已广泛应用,以提高这些分离的准确性。在本调查中,我们概述了那些在知名内在图像数据集和文献中使用的相关度量的结果,讨论了预测所需的内在图像分解的适用性。虽然Lambertian的假设仍然是许多方法的基础,但我们表明,对图像形成过程更复杂的物理原理组件的潜力越来越意识到,这是光学准确的材料模型和几何形状,更完整的逆轻型运输估计。考虑使用的前瞻和模型以及驾驶分解过程的学习架构和方法,我们将这些方法分类为分解的类型。考虑到最近神经,逆和可微分的渲染技术的进步,我们还提供了关于未来研究方向的见解。
translated by 谷歌翻译
高光谱成像为各种应用提供了新的视角,包括使用空降或卫星遥感,精密养殖,食品安全,行星勘探或天体物理学的环境监测。遗憾的是,信息的频谱分集以各种劣化来源的牺牲品,并且目前获取的缺乏准确的地面“清洁”高光谱信号使得恢复任务具有挑战性。特别是,与传统的RGB成像问题相比,培训深度神经网络用于恢复难以深入展现的传统RGB成像问题。在本文中,我们提倡基于稀疏编码原理的混合方法,其保留与手工图像前导者编码域知识的经典技术的可解释性,同时允许在没有大量数据的情况下训练模型参数。我们在各种去噪基准上展示了我们的方法是计算上高效并且显着优于现有技术。
translated by 谷歌翻译
深度完成旨在预测从深度传感器(例如Lidars)中捕获的极稀疏图的密集像素深度。它在各种应用中起着至关重要的作用,例如自动驾驶,3D重建,增强现实和机器人导航。基于深度学习的解决方案已经证明了这项任务的最新成功。在本文中,我们首次提供了全面的文献综述,可帮助读者更好地掌握研究趋势并清楚地了解当前的进步。我们通过通过对现有方法进行分类的新型分类法提出建议,研究网络体系结构,损失功能,基准数据集和学习策略的设计方面的相关研究。此外,我们在包括室内和室外数据集(包括室内和室外数据集)上进行了三个广泛使用基准测试的模型性能进行定量比较。最后,我们讨论了先前作品的挑战,并为读者提供一些有关未来研究方向的见解。
translated by 谷歌翻译
大量的数据和创新算法使数据驱动的建模成为现代行业的流行技术。在各种数据驱动方法中,潜在变量模型(LVM)及其对应物占主要份额,并在许多工业建模领域中起着至关重要的作用。 LVM通常可以分为基于统计学习的经典LVM和基于神经网络的深层LVM(DLVM)。我们首先讨论经典LVM的定义,理论和应用,该定义和应用既是综合教程,又是对经典LVM的简短申请调查。然后,我们对当前主流DLVM进行了彻底的介绍,重点是其理论和模型体系结构,此后不久就提供了有关DLVM的工业应用的详细调查。上述两种类型的LVM具有明显的优势和缺点。具体而言,经典的LVM具有简洁的原理和良好的解释性,但是它们的模型能力无法解决复杂的任务。基于神经网络的DLVM具有足够的模型能力,可以在复杂的场景中实现令人满意的性能,但它以模型的解释性和效率为例。旨在结合美德并减轻这两种类型的LVM的缺点,并探索非神经网络的举止以建立深层模型,我们提出了一个新颖的概念,称为“轻量级Deep LVM(LDLVM)”。在提出了这个新想法之后,该文章首先阐述了LDLVM的动机和内涵,然后提供了两个新颖的LDLVM,并详尽地描述了其原理,建筑和优点。最后,讨论了前景和机会,包括重要的开放问题和可能的研究方向。
translated by 谷歌翻译
高光谱图像(HSI)没有额外辅助图像的超分辨率仍然是由于其高维光谱图案的恒定挑战,其中学习有效的空间和光谱表示是基本问题。最近,隐式的神经表示(INR)正在进行进步,作为新颖且有效的代表,特别是在重建任务中。因此,在这项工作中,我们提出了一种基于INR的新颖的HSI重建模型,其通过将空间坐标映射到其对应的光谱辐射值值的连续函数来表示HSI。特别地,作为INR的特定实现,参数模型的参数是通过使用卷积网络在特征提取的超通知来预测的。它使连续功能以内容感知方式将空间坐标映射到像素值。此外,周期性空间编码与重建过程深度集成,这使得我们的模型能够恢复更高的频率细节。为了验证我们模型的功效,我们在三个HSI数据集(洞穴,NUS和NTIRE2018)上进行实验。实验结果表明,与最先进的方法相比,该建议的模型可以实现竞争重建性能。此外,我们提供了对我们模型各个组件的效果的消融研究。我们希望本文可以服务器作为未来研究的效率参考。
translated by 谷歌翻译