随机梯度下降(SGD)及其变体已经建立为具有独立样本的大型机器学习问题的进入算法,由于其泛化性能和内在的计算优势。然而,随机梯度是具有相关样本的全梯度的偏置估计的事实导致了对SGD在相关环境中的表现和阻碍其在这种情况下使用的理解缺乏理论理解。在本文中,我们专注于高斯过程(GP)的近似参数估计,并通过证明小纤维SGD收敛到完整日志似然丢失功能的关键点来打破屏障的一步,并恢复速率$率的模型超参数o(\ frac {1} {k})$ k $迭代,达到统计误差术语,具体取决于小靶大小。我们的理论担保仍然存在,内核功能表现出指数或多项式EIGENDECAY,这是通过GPS常用的各种核的满足。模拟和实时数据集的数值研究表明,Minibatch SGD在最先进的GP方法上具有更好的推广,同时降低了计算负担并开启了GPS的新的,先前未开发的数据大小制度。
translated by 谷歌翻译
在本文中,我们提出\ texttt {fgpr}:一个联合高斯进程($ \ mathcal {gp} $)回归框架,它使用了用于本地客户端计算的模型聚合和随机梯度血缘的平均策略。值得注意的是,由此产生的全局模型在个性化中excels作为\ texttt {fgpr}共同学习所有客户端之前的全局$ \ mathcal {gp} $。然后通过利用该本地数据来获得预测后的后退,并在从特定客户端编码个性化功能的本地数据获得。从理论上讲,我们显示\ texttt {fgpr}会聚到完整对数似然函数的关键点,但符合统计误差。通过广泛的案例研究,我们展示了\ TextTT {FGPR}在广泛的应用中擅长,并且是隐私保留多保真数据建模的有希望的方法。
translated by 谷歌翻译
简单的随机动量方法被广泛用于机器学习优化,但它们的良好实践表现与文献中没有理论保证的理论保证相矛盾。在这项工作中,我们的目标是通过表明随机重球动量来弥合理论和实践之间的差距,该动力可以解释为具有动量的随机kaczmarz算法,保留了二次优化问题(确定性)重球动量的快速线性速率,至少在使用足够大的批次大小的小型匹配时。该分析依赖于仔细分解动量过渡矩阵,并使用新的光谱范围浓度界限来进行独立随机矩阵的产物。我们提供数值实验,以证明我们的边界相当锐利。
translated by 谷歌翻译
现代神经网络通常以强烈的过度构造状态运行:它们包含许多参数,即使实际标签被纯粹随机的标签代替,它们也可以插入训练集。尽管如此,他们在看不见的数据上达到了良好的预测错误:插值训练集并不会导致巨大的概括错误。此外,过度散色化似乎是有益的,因为它简化了优化景观。在这里,我们在神经切线(NT)制度中的两层神经网络的背景下研究这些现象。我们考虑了一个简单的数据模型,以及各向同性协变量的矢量,$ d $尺寸和$ n $隐藏的神经元。我们假设样本量$ n $和尺寸$ d $都很大,并且它们在多项式上相关。我们的第一个主要结果是对过份术的经验NT内核的特征结构的特征。这种表征意味着必然的表明,经验NT内核的最低特征值在$ ND \ gg n $后立即从零界限,因此网络可以在同一制度中精确插值任意标签。我们的第二个主要结果是对NT Ridge回归的概括误差的表征,包括特殊情况,最小值-ULL_2 $ NORD插值。我们证明,一旦$ nd \ gg n $,测试误差就会被内核岭回归之一相对于无限宽度内核而近似。多项式脊回归的误差依次近似后者,从而通过与激活函数的高度组件相关的“自我诱导的”项增加了正则化参数。多项式程度取决于样本量和尺寸(尤其是$ \ log n/\ log d $)。
translated by 谷歌翻译
We consider minimizing a smooth and strongly convex objective function using a stochastic Newton method. At each iteration, the algorithm is given an oracle access to a stochastic estimate of the Hessian matrix. The oracle model includes popular algorithms such as Subsampled Newton and Newton Sketch. Despite using second-order information, these existing methods do not exhibit superlinear convergence, unless the stochastic noise is gradually reduced to zero during the iteration, which would lead to a computational blow-up in the per-iteration cost. We propose to address this limitation with Hessian averaging: instead of using the most recent Hessian estimate, our algorithm maintains an average of all the past estimates. This reduces the stochastic noise while avoiding the computational blow-up. We show that this scheme exhibits local $Q$-superlinear convergence with a non-asymptotic rate of $(\Upsilon\sqrt{\log (t)/t}\,)^{t}$, where $\Upsilon$ is proportional to the level of stochastic noise in the Hessian oracle. A potential drawback of this (uniform averaging) approach is that the averaged estimates contain Hessian information from the global phase of the method, i.e., before the iterates converge to a local neighborhood. This leads to a distortion that may substantially delay the superlinear convergence until long after the local neighborhood is reached. To address this drawback, we study a number of weighted averaging schemes that assign larger weights to recent Hessians, so that the superlinear convergence arises sooner, albeit with a slightly slower rate. Remarkably, we show that there exists a universal weighted averaging scheme that transitions to local convergence at an optimal stage, and still exhibits a superlinear convergence rate nearly (up to a logarithmic factor) matching that of uniform Hessian averaging.
translated by 谷歌翻译
最近,在学习没有更换SGD的收敛率的情况下,有很多兴趣,并证明它在最坏情况下比更换SGD更快。然而,已知的下限忽略了问题的几何形状,包括其条件号,而上限明确取决于它。也许令人惊讶的是,我们证明,当考虑条件号时,没有替换SGD \ EMPH {没有}在最坏情况下,除非是时期的数量(通过数据来说)大于条件号。由于机器学习和其他领域的许多问题都没有条件并涉及大型数据集,这表明没有替换不一定改善用于现实迭代预算的更换采样。我们通过提供具有紧密(最多日志因子)的新下限和上限来展示这一点,用于致通二次术语的二次问题,精确地量化了对问题参数的依赖性。
translated by 谷歌翻译
我们研究稀疏的线性回归在一个代理网络上,建模为无向图(没有集中式节点)。估计问题被制定为当地套索损失函数的最小化,加上共识约束的二次惩罚 - 后者是获取分布式解决方案方法的工具。虽然在优化文献中广泛研究了基于惩罚的共识方法,但其高维设置中的统计和计算保证仍不清楚。这项工作提供了对此公开问题的答案。我们的贡献是两倍。 First, we establish statistical consistency of the estimator: under a suitable choice of the penalty parameter, the optimal solution of the penalized problem achieves near optimal minimax rate $\mathcal{O}(s \log d/N)$ in $\ell_2 $ -loss,$ s $是稀疏性值,$ d $是环境维度,$ n $是网络中的总示例大小 - 这与集中式采样率相匹配。其次,我们表明,应用于惩罚问题的近端梯度算法,它自然导致分布式实现,线性地收敛到集中统计误差的顺序的公差 - 速率比例为$ \ mathcal {o}( d)$,揭示不可避免的速度准确性困境。数值结果证明了衍生的采样率和收敛速率缩放的紧张性。
translated by 谷歌翻译
在本文中,我们利用过度参数化来设计高维单索索引模型的无规矩算法,并为诱导的隐式正则化现象提供理论保证。具体而言,我们研究了链路功能是非线性且未知的矢量和矩阵单索引模型,信号参数是稀疏向量或低秩对称矩阵,并且响应变量可以是重尾的。为了更好地理解隐含正规化的角色而没有过度的技术性,我们假设协变量的分布是先验的。对于载体和矩阵设置,我们通过采用分数函数变换和专为重尾数据的强大截断步骤来构造过度参数化最小二乘损耗功能。我们建议通过将无规则化的梯度下降应用于损耗函数来估计真实参数。当初始化接近原点并且步骤中足够小时,我们证明了所获得的解决方案在载体和矩阵案件中实现了最小的收敛统计速率。此外,我们的实验结果支持我们的理论调查结果,并表明我们的方法在$ \ ell_2 $ -staticatisticated率和变量选择一致性方面具有明确的正则化的经验卓越。
translated by 谷歌翻译
最近出现了变异推断,成为大规模贝叶斯推理中古典马尔特·卡洛(MCMC)的流行替代品。变异推断的核心思想是贸易统计准确性以达到计算效率。它旨在近似后部,以降低计算成本,但可能损害其统计准确性。在这项工作中,我们通过推论模型选择中的案例研究研究了这种统计和计算权衡。侧重于具有对角和低级精度矩阵的高斯推论模型(又名变异近似族),我们在两个方面启动了对权衡的理论研究,贝叶斯后期推断误差和频繁的不确定性不确定定量误差。从贝叶斯后推理的角度来看,我们表征了相对于精确后部的变异后部的误差。我们证明,鉴于固定的计算预算,较低的推论模型会产生具有较高统计近似误差的变异后期,但计算误差较低。它减少了随机优化的方差,进而加速收敛。从频繁的不确定性定量角度来看,我们将变异后部的精度矩阵视为不确定性估计值。我们发现,相对于真实的渐近精度,变异近似遭受了来自数据的采样不确定性的附加统计误差。此外,随着计算预算的增加,这种统计误差成为主要因素。结果,对于小型数据集,推论模型不必全等级即可达到最佳估计误差。我们最终证明了在经验研究之间的这些统计和计算权衡推论,从而证实了理论发现。
translated by 谷歌翻译
在本文中,我们通过随机搜索方向的Kiefer-Wolfowitz算法调查了随机优化问题模型参数的统计参数问题。我们首先介绍了Polyak-ruppert-veriving型Kiefer-Wolfowitz(AKW)估计器的渐近分布,其渐近协方差矩阵取决于函数查询复杂性和搜索方向的分布。分布结果反映了统计效率与函数查询复杂性之间的权衡。我们进一步分析了随机搜索方向的选择来最小化渐变协方差矩阵,并得出结论,最佳搜索方向取决于相对于Fisher信息矩阵的不同摘要统计的最优标准。根据渐近分布结果,我们通过提供两个有效置信区间的结构进行一次通过统计推理。我们提供了验证我们的理论结果的数值实验,并通过程序的实际效果。
translated by 谷歌翻译
元学习或学习学习,寻求设计算法,可以利用以前的经验快速学习新技能或适应新环境。表示学习 - 用于执行元学习的关键工具 - 了解可以在多个任务中传输知识的数据表示,这在数据稀缺的状态方面是必不可少的。尽管最近在Meta-Leature的实践中感兴趣的兴趣,但缺乏元学习算法的理论基础,特别是在学习可转让陈述的背景下。在本文中,我们专注于多任务线性回归的问题 - 其中多个线性回归模型共享常见的低维线性表示。在这里,我们提供了可提供的快速,采样高效的算法,解决了(1)的双重挑战,从多个相关任务和(2)将此知识转移到新的,看不见的任务中的常见功能。两者都是元学习的一般问题的核心。最后,我们通过在学习这些线性特征的样本复杂性上提供信息定理下限来补充这些结果。
translated by 谷歌翻译
Influence diagnostics such as influence functions and approximate maximum influence perturbations are popular in machine learning and in AI domain applications. Influence diagnostics are powerful statistical tools to identify influential datapoints or subsets of datapoints. We establish finite-sample statistical bounds, as well as computational complexity bounds, for influence functions and approximate maximum influence perturbations using efficient inverse-Hessian-vector product implementations. We illustrate our results with generalized linear models and large attention based models on synthetic and real data.
translated by 谷歌翻译
从数据中学习的方法取决于各种类型的调整参数,例如惩罚强度或步长大小。由于性能可以在很大程度上取决于这些参数,因此重要的是要比较估算器的类别 - 考虑规定的有限调谐参数集,而不是特别调谐的方法。在这项工作中,我们通过同类中最佳方法的相对性能研究方法类。我们考虑了线性回归的中心问题,即随机的各向同性地面真理,并研究了两种基本方法的估计性能,即梯度下降和脊回归。我们公布以下现象。 (1)对于一般设计,当经验数据协方差矩阵衰减的特征值缓慢,作为指数较不小于统一的功率定律时,恒定的梯度下降优于山脊回归。相反,如果特征值迅速衰减,则作为指数大于统一或指数的权力定律,我们表明山脊回归优于梯度下降。 (2)对于正交设计,我们计算了确切的最小值最佳估计器类别(达到最低最大最大最佳),这表明它等同于具有衰减学习率的梯度下降。我们发现山脊回归和梯度下降的次数均具有恒定的步长。我们的结果表明,统计性能可以在很大程度上取决于调整参数。特别是,虽然最佳调谐脊回归是我们设置中的最佳估计器,但当仅在有限的许多正则化参数上调整两种方法时,它可以用任意/无界数量的梯度下降来表现优于梯度下降。
translated by 谷歌翻译
通过在线规范相关性分析的问题,我们提出了\ emph {随机缩放梯度下降}(SSGD)算法,以最小化通用riemannian歧管上的随机功能的期望。 SSGD概括了投影随机梯度下降的思想,允许使用缩放的随机梯度而不是随机梯度。在特殊情况下,球形约束的特殊情况,在广义特征向量问题中产生的,我们建立了$ \ sqrt {1 / t} $的令人反感的有限样本,并表明该速率最佳最佳,直至具有积极的积极因素相关参数。在渐近方面,一种新的轨迹平均争论使我们能够实现局部渐近常态,其速率与鲁普特 - Polyak-Quaditsky平均的速率匹配。我们将这些想法携带在一个在线规范相关分析,从事文献中的第一次获得了最佳的一次性尺度算法,其具有局部渐近融合到正常性的最佳一次性尺度算法。还提供了用于合成数据的规范相关分析的数值研究。
translated by 谷歌翻译
学习线性时间不变动态系统(LTID)的参数是当前兴趣的问题。在许多应用程序中,人们有兴趣联合学习多个相关LTID的参数,这仍然是未探究的日期。为此,我们开发一个联合估计器,用于学习共享常见基矩阵的LTID的过渡矩阵。此外,我们建立有限时间误差界限,取决于底层的样本大小,维度,任务数和转换矩阵的光谱属性。结果是在轻度规律假设下获得的,并在单独学习每个系统的比较中,展示从LTID的汇集信息汇总信息。我们还研究了错过过渡矩阵的联合结构的影响,并显示成立的结果在适度误操作的存在下是强大的。
translated by 谷歌翻译
我们提出了一种基于优化的基于优化的框架,用于计算差异私有M估算器以及构建差分私立置信区的新方法。首先,我们表明稳健的统计数据可以与嘈杂的梯度下降或嘈杂的牛顿方法结合使用,以便分别获得具有全局线性或二次收敛的最佳私人估算。我们在局部强大的凸起和自我协调下建立当地和全球融合保障,表明我们的私人估算变为对非私人M估计的几乎最佳附近的高概率。其次,我们通过构建我们私有M估计的渐近方差的差异私有估算来解决参数化推断的问题。这自然导致近​​似枢轴统计,用于构建置信区并进行假设检测。我们展示了偏置校正的有效性,以提高模拟中的小样本实证性能。我们说明了我们在若干数值例子中的方法的好处。
translated by 谷歌翻译
我们提供了新的基于梯度的方法,以便有效解决广泛的病态化优化问题。我们考虑最小化函数$ f:\ mathbb {r} ^ d \ lightarrow \ mathbb {r} $的问题,它是隐含的可分解的,作为$ m $未知的非交互方式的总和,强烈的凸起功能并提供方法这解决了这个问题,这些问题是缩放(最快的对数因子)作为组件的条件数量的平方根的乘积。这种复杂性绑定(我们证明几乎是最佳的)可以几乎指出的是加速梯度方法的几乎是指数的,这将作为$ F $的条件数量的平方根。此外,我们提供了求解该多尺度优化问题的随机异标变体的有效方法。而不是学习$ F $的分解(这将是过度昂贵的),而是我们的方法应用一个清洁递归“大步小步”交错标准方法。由此产生的算法使用$ \ tilde {\ mathcal {o}}(d m)$空间,在数字上稳定,并打开门以更细粒度的了解凸优化超出条件号的复杂性。
translated by 谷歌翻译
In the classical setting of self-selection, the goal is to learn $k$ models, simultaneously from observations $(x^{(i)}, y^{(i)})$ where $y^{(i)}$ is the output of one of $k$ underlying models on input $x^{(i)}$. In contrast to mixture models, where we observe the output of a randomly selected model, here the observed model depends on the outputs themselves, and is determined by some known selection criterion. For example, we might observe the highest output, the smallest output, or the median output of the $k$ models. In known-index self-selection, the identity of the observed model output is observable; in unknown-index self-selection, it is not. Self-selection has a long history in Econometrics and applications in various theoretical and applied fields, including treatment effect estimation, imitation learning, learning from strategically reported data, and learning from markets at disequilibrium. In this work, we present the first computationally and statistically efficient estimation algorithms for the most standard setting of this problem where the models are linear. In the known-index case, we require poly$(1/\varepsilon, k, d)$ sample and time complexity to estimate all model parameters to accuracy $\varepsilon$ in $d$ dimensions, and can accommodate quite general selection criteria. In the more challenging unknown-index case, even the identifiability of the linear models (from infinitely many samples) was not known. We show three results in this case for the commonly studied $\max$ self-selection criterion: (1) we show that the linear models are indeed identifiable, (2) for general $k$ we provide an algorithm with poly$(d) \exp(\text{poly}(k))$ sample and time complexity to estimate the regression parameters up to error $1/\text{poly}(k)$, and (3) for $k = 2$ we provide an algorithm for any error $\varepsilon$ and poly$(d, 1/\varepsilon)$ sample and time complexity.
translated by 谷歌翻译
在本文中,我们考虑了第一和二阶技术来解决机器学习中产生的连续优化问题。在一阶案例中,我们提出了一种从确定性或半确定性到随机二次正则化方法的转换框架。我们利用随机优化的两相性质提出了一种具有自适应采样和自适应步长的新型一阶算法。在二阶案例中,我们提出了一种新型随机阻尼L-BFGS方法,该方法可以在深度学习的高度非凸起背景下提高先前的算法。这两种算法都在众所周知的深度学习数据集上进行评估并表现出有希望的性能。
translated by 谷歌翻译
我们研究了差异私有线性回归的问题,其中每个数据点都是从固定的下高斯样式分布中采样的。我们提出和分析了一个单次迷你批次随机梯度下降法(DP-AMBSSGD),其中每次迭代中的点都在没有替换的情况下进行采样。为DP添加了噪声,但噪声标准偏差是在线估计的。与现有$(\ epsilon,\ delta)$ - 具有子最佳错误界限的DP技术相比,DP-AMBSSGD能够在关键参数(如多维参数)(如多维参数)等方面提供几乎最佳的错误范围$,以及观测值的噪声的标准偏差$ \ sigma $。例如,当对$ d $二维的协变量进行采样时。从正常分布中,然后由于隐私而引起的DP-AMBSSGD的多余误差为$ \ frac {\ sigma^2 d} {n} {n}(1+ \ frac {d} {\ epsilon^2 n})$,即当样本数量$ n = \ omega(d \ log d)$,这是线性回归的标准操作制度时,错误是有意义的。相比之下,在此设置中现有有效方法的错误范围为:$ \ mathcal {o} \ big(\ frac {d^3} {\ epsilon^2 n^2} \ big)$,即使是$ \ sigma = 0 $。也就是说,对于常量的$ \ epsilon $,现有技术需要$ n = \ omega(d \ sqrt {d})$才能提供非平凡的结果。
translated by 谷歌翻译