Data scarcity is common in deep learning models for medical image segmentation. Previous works proposed multi-dataset learning, either simultaneously or via transfer learning to expand training sets. However, medical image datasets have diverse-sized images and features, and developing a model simultaneously for multiple datasets is challenging. This work proposes Fabric Image Representation Encoding Network (FIRENet), a universal architecture for simultaneous multi-dataset segmentation and transfer learning involving arbitrary numbers of dataset(s). To handle different-sized image and feature, a 3D fabric module is used to encapsulate many multi-scale sub-architectures. An optimal combination of these sub-architectures can be implicitly learnt to best suit the target dataset(s). For diverse-scale feature extraction, a 3D extension of atrous spatial pyramid pooling (ASPP3D) is used in each fabric node for a fine-grained coverage of rich-scale image features. In the first experiment, FIRENet performed 3D universal bone segmentation of multiple musculoskeletal datasets of the human knee, shoulder and hip joints and exhibited excellent simultaneous multi-dataset segmentation performance. When tested for transfer learning, FIRENet further exhibited excellent single dataset performance (when pre-training on a prostate dataset), as well as significantly improved universal bone segmentation performance. The following experiment involves the simultaneous segmentation of the 10 Medical Segmentation Decathlon (MSD) challenge datasets. FIRENet demonstrated good multi-dataset segmentation results and inter-dataset adaptability of highly diverse image sizes. In both experiments, FIRENet's streamlined multi-dataset learning with one unified network that requires no hyper-parameter tuning.
translated by 谷歌翻译
深度学习已被广​​泛用于医学图像分割,并且录制了录制了该领域深度学习的成功的大量论文。在本文中,我们使用深层学习技术对医学图像分割的全面主题调查。本文进行了两个原创贡献。首先,与传统调查相比,直接将深度学习的文献分成医学图像分割的文学,并为每组详细介绍了文献,我们根据从粗略到精细的多级结构分类目前流行的文献。其次,本文侧重于监督和弱监督的学习方法,而不包括无监督的方法,因为它们在许多旧调查中引入而且他们目前不受欢迎。对于监督学习方法,我们分析了三个方面的文献:骨干网络的选择,网络块的设计,以及损耗功能的改进。对于虚弱的学习方法,我们根据数据增强,转移学习和交互式分割进行调查文献。与现有调查相比,本调查将文献分类为比例不同,更方便读者了解相关理由,并将引导他们基于深度学习方法思考医学图像分割的适当改进。
translated by 谷歌翻译
作为新一代神经体系结构的变形金刚在自然语言处理和计算机视觉方面表现出色。但是,现有的视觉变形金刚努力使用有限的医学数据学习,并且无法概括各种医学图像任务。为了应对这些挑战,我们将Medformer作为数据量表变压器呈现为可推广的医学图像分割。关键设计结合了理想的电感偏差,线性复杂性的层次建模以及以空间和语义全局方式以线性复杂性的关注以及多尺度特征融合。 Medformer可以在不预训练的情况下学习微小至大规模的数据。广泛的实验表明,Medformer作为一般分割主链的潜力,在三个具有多种模式(例如CT和MRI)和多样化的医学靶标(例如,健康器官,疾病,疾病组织和肿瘤)的三个公共数据集上优于CNN和视觉变压器。我们将模型和评估管道公开可用,为促进广泛的下游临床应用提供固体基线和无偏比较。
translated by 谷歌翻译
小儿肌肉骨骼系统的临床诊断依赖于医学成像检查的分析。在医学图像处理管道中,使用深度学习算法的语义分割使人可以自动生成患者特定的三维解剖模型,这对于形态学评估至关重要。但是,小儿成像资源的稀缺性可能导致单个深层分割模型的准确性和泛化性能降低。在这项研究中,我们建议设计一个新型的多任务多任务多域学习框架,在该框架中,单个分割网络对由解剖学的不同部分产生的多个数据集进行了优化。与以前的方法不同,我们同时考虑多个强度域和分割任务来克服小儿数据的固有稀缺性,同时利用成像数据集之间的共享特征。为了进一步提高概括能力,我们从自然图像分类中采用了转移学习方案,以及旨在在共享表示中促进域特异性群集的多尺度对比正则化,以及多连接解剖学先验来执行解剖学上一致的预测。我们评估了使用脚踝,膝盖和肩关节的三个稀缺和小儿成像数据集进行骨分割的贡献。我们的结果表明,所提出的方法在骰子指标中的表现优于个人,转移和共享分割方案,并具有统计学上足够的利润。拟议的模型为智能使用成像资源和更好地管理小儿肌肉骨骼疾病提供了新的观点。
translated by 谷歌翻译
In medical image analysis, automated segmentation of multi-component anatomical structures, which often have a spectrum of potential anomalies and pathologies, is a challenging task. In this work, we develop a multi-step approach using U-Net-based neural networks to initially detect anomalies (bone marrow lesions, bone cysts) in the distal femur, proximal tibia and patella from 3D magnetic resonance (MR) images of the knee in individuals with varying grades of osteoarthritis. Subsequently, the extracted data are used for downstream tasks involving semantic segmentation of individual bone and cartilage volumes as well as bone anomalies. For anomaly detection, the U-Net-based models were developed to reconstruct the bone profiles of the femur and tibia in images via inpainting so anomalous bone regions could be replaced with close to normal appearances. The reconstruction error was used to detect bone anomalies. A second anomaly-aware network, which was compared to anomaly-na\"ive segmentation networks, was used to provide a final automated segmentation of the femoral, tibial and patellar bones and cartilages from the knee MR images containing a spectrum of bone anomalies. The anomaly-aware segmentation approach provided up to 58% reduction in Hausdorff distances for bone segmentations compared to the results from the anomaly-na\"ive segmentation networks. In addition, the anomaly-aware networks were able to detect bone lesions in the MR images with greater sensitivity and specificity (area under the receiver operating characteristic curve [AUC] up to 0.896) compared to the anomaly-na\"ive segmentation networks (AUC up to 0.874).
translated by 谷歌翻译
随着深度学习方法的进步,如深度卷积神经网络,残余神经网络,对抗网络的进步。 U-Net架构最广泛利用生物医学图像分割,以解决目标区域或子区域的识别和检测的自动化。在最近的研究中,基于U-Net的方法在不同应用中显示了最先进的性能,以便在脑肿瘤,肺癌,阿尔茨海默,乳腺癌等疾病的早期诊断和治疗中发育计算机辅助诊断系统等,使用各种方式。本文通过描述U-Net框架来提出这些方法的成功,然后通过执行1)型号的U-Net变体进行综合分析,2)模特内分类,建立更好的见解相关的挑战和解决方案。此外,本文还强调了基于U-Net框架在持续的大流行病,严重急性呼吸综合征冠状病毒2(SARS-COV-2)中的贡献也称为Covid-19。最后,分析了这些U-Net变体的优点和相似性以及生物医学图像分割所涉及的挑战,以发现该领域的未来未来的研究方向。
translated by 谷歌翻译
机器学习和计算机视觉技术近年来由于其自动化,适合性和产生惊人结果的能力而迅速发展。因此,在本文中,我们调查了2014年至2022年之间发表的关键研究,展示了不同的机器学习算法研究人员用来分割肝脏,肝肿瘤和肝脉管结构的研究。我们根据感兴趣的组织(肝果,肝肿瘤或肝毒剂)对被调查的研究进行了划分,强调了同时解决多个任务的研究。此外,机器学习算法被归类为受监督或无监督的,如果属于某个方案的工作量很大,则将进一步分区。此外,对文献和包含上述组织面具的网站发现的不同数据集和挑战进行了彻底讨论,强调了组织者的原始贡献和其他研究人员的贡献。同样,在我们的评论中提到了文献中过度使用的指标,这强调了它们与手头的任务的相关性。最后,强调创新研究人员应对需要解决的差距的关键挑战和未来的方向,例如许多关于船舶分割挑战的研究的稀缺性以及为什么需要早日处理他们的缺席。
translated by 谷歌翻译
人类生理学中的各种结构遵循特异性形态,通常在非常细的尺度上表达复杂性。这种结构的例子是胸前气道,视网膜血管和肝血管。可以观察到可以观察到可以观察到可以观察到可以观察到空间排列的磁共振成像(MRI),计算机断层扫描(CT),光学相干断层扫描(OCT)等医学成像模式(MRI),计算机断层扫描(CT),可以观察到空间排列的大量2D和3D图像的集合。这些结构在医学成像中的分割非常重要,因为对结构的分析提供了对疾病诊断,治疗计划和预后的见解。放射科医生手动标记广泛的数据通常是耗时且容易出错的。结果,在过去的二十年中,自动化或半自动化的计算模型已成为医学成像的流行研究领域,迄今为止,许多计算模型已经开发出来。在这项调查中,我们旨在对当前公开可用的数据集,细分算法和评估指标进行全面审查。此外,讨论了当前的挑战和未来的研究方向。
translated by 谷歌翻译
从医用试剂染色图像中分割牙齿斑块为诊断和确定随访治疗计划提供了宝贵的信息。但是,准确的牙菌斑分割是一项具有挑战性的任务,需要识别牙齿和牙齿斑块受到语义腔区域的影响(即,在牙齿和牙齿斑块之间的边界区域中存在困惑的边界)以及实例形状的复杂变化,这些变化均未完全解决。现有方法。因此,我们提出了一个语义分解网络(SDNET),该网络介绍了两个单任务分支,以分别解决牙齿和牙齿斑块的分割,并设计了其他约束,以学习每个分支的特定类别特征,从而促进语义分解并改善该类别的特征牙齿分割的性能。具体而言,SDNET以分裂方式学习了两个单独的分割分支和牙齿的牙齿,以解除它们之间的纠缠关系。指定类别的每个分支都倾向于产生准确的分割。为了帮助这两个分支更好地关注特定类别的特征,进一步提出了两个约束模块:1)通过最大化不同类别表示之间的距离来学习判别特征表示,以了解判别特征表示形式,以减少减少负面影响关于特征提取的语义腔区域; 2)结构约束模块(SCM)通过监督边界感知的几何约束提供完整的结构信息,以提供各种形状的牙菌斑。此外,我们构建了一个大规模的开源染色牙菌斑分割数据集(SDPSEG),该数据集为牙齿和牙齿提供高质量的注释。 SDPSEG数据集的实验结果显示SDNET达到了最新的性能。
translated by 谷歌翻译
卷积神经网络(CNN)已成为医疗图像分割任务的共识。但是,由于卷积操作的性质,它们在建模长期依赖性和空间相关性时受到限制。尽管最初开发了变压器来解决这个问题,但它们未能捕获低级功能。相比之下,证明本地和全球特征对于密集的预测至关重要,例如在具有挑战性的环境中细分。在本文中,我们提出了一种新型方法,该方法有效地桥接了CNN和用于医学图像分割的变压器。具体而言,我们使用开创性SWIN变压器模块和一个基于CNN的编码器设计两个多尺度特征表示。为了确保从上述两个表示获得的全局和局部特征的精细融合,我们建议在编码器编码器结构的跳过连接中提出一个双层融合(DLF)模块。在各种医学图像分割数据集上进行的广泛实验证明了Hiformer在计算复杂性以及定量和定性结果方面对其他基于CNN的,基于变压器和混合方法的有效性。我们的代码可在以下网址公开获取:https://github.com/amirhossein-kz/hiformer
translated by 谷歌翻译
脑肿瘤分割是医学图像分析中最具挑战性问题之一。脑肿瘤细分的目标是产生准确描绘脑肿瘤区域。近年来,深入学习方法在解决各种计算机视觉问题时表现出了有希望的性能,例如图像分类,对象检测和语义分割。基于深度学习的方法已经应用于脑肿瘤细分并取得了有希望的结果。考虑到最先进技术所制作的显着突破,我们使用本调查来提供最近开发的深层学习脑肿瘤分割技术的全面研究。在本次调查中选择并讨论了100多篇科学论文,广泛地涵盖了网络架构设计,在不平衡条件下的细分等技术方面,以及多种方式流程。我们还为未来的发展方向提供了富有洞察力的讨论。
translated by 谷歌翻译
儿科肌肉骨骼系统的形态学和诊断评价在临床实践中至关重要。但是,大多数分段模型在稀缺的儿科成像数据上都不好。我们提出了一种新的预训练的正则化卷积编码器 - 解码器,用于分割异质儿科磁共振(MR)图像的具有挑战性的任务。在这方面,我们采用转移学习方法以及正规化策略来改善分段模型的概括。为此,我们已经构思了用于分割网络的新颖优化方案,其包括丢失函数的额外正则化术语。为了获得全局一致的预测,我们纳入了基于形状的正则化,从自动编码器学习的非线性形状表示来源。另外,通过鉴别器计算的对抗正规化是集成的,以鼓励合理的描绘。评估来自脚踝和肩部关节的两个稀缺的小儿摄像数据集的多骨分割任务的方法,包括病理和健康检查。所提出的方法与先前提出的骰子,灵敏度,特异性,最大对称表面距离,平均对称表面距离和相对绝对体积差异度量的方法更好或以前的方法进行更好或以前的方法进行比例。我们说明所提出的方法可以很容易地集成到各种骨骼分割策略中,并且可以提高在大型非医学图像数据库上预先培训的模型的预测准确性。获得的结果为小儿肌肉骨骼障碍的管理带来了新的视角。
translated by 谷歌翻译
精确可靠地分割医学图像对于疾病诊断和治疗是重要的。由于各种各样的物体尺寸,形状和扫​​描方式,这是一个具有挑战性的任务。最近,许多卷积神经网络(CNN)设计用于分割任务,取得了巨大的成功。然而,很少有研究完全考虑了物体的大小,因此大多数表现出对小物体分割的分割的性能不佳。这对早期检测疾病产生重大影响。本文提出了一种上下文轴向储备注意网络(Caranet),与最近最先进的模型相比,在小对象上提高小物体的分割性能。我们在脑肿瘤(Brats 2018)和息肉(Kvasir-Seg,CVC-Colondb,CVC-ClinicDB,CVC-300和ETIS-LaribpolypdB)进行测试。我们的加麻不仅达到了顶级的骰子分割精度,而且还显示出小医疗物体的分割的明显优势。
translated by 谷歌翻译
计算机断层扫描(CT)图像中腹部器官的自动分割可以支持放射治疗和图像引导的手术工作流程。这种自动解决方案的开发仍然挑战,主要是由于CT图像中的复杂器官相互作用和模糊边界。为了解决这些问题,我们专注于有效的空间上下文建模和显式边缘分段前提。因此,我们提出了一个3D网络,其中四个主要组件训练了端到端,包括共享编码器,边缘检测器,具有边缘跳过连接的解码器(ESC)和复制特征传播头(RFP-head)。为了捕获宽范围的空间依赖性,RFP-磁头通过以有效的切片方式配制的定向非循环图(DAG)传播和收集局部特征,以高效的切片方式,关于图像单元的空间排列。为了利用边缘信息,边缘探测器通过利用边缘监控来学习专门针对语义分割专门调整的边缘知识。然后,ESC通过多级解码器特征聚合边缘知识,以学习判别特征的层次结构明确地建模器官内部和边缘之间的互补性进行分割。我们对具有八个带电器官的两个挑战性腹部CT数据集进行了广泛的实验。实验结果表明,所提出的网络优于几种最先进的模型,特别是对于小而复杂的结构(胆囊,食道,胃,胰腺和十二指肠)的分割。该代码将公开。
translated by 谷歌翻译
卷积神经网络(CNN)的深度学习体系结构在计算机视野领域取得了杰出的成功。 CNN构建的编码器架构U-Net在生物医学图像分割方面取得了重大突破,并且已在各种实用的情况下应用。但是,编码器部分中每个下采样层和简单堆积的卷积的平等设计不允许U-NET从不同深度提取足够的特征信息。医学图像的复杂性日益增加为现有方法带来了新的挑战。在本文中,我们提出了一个更深层,更紧凑的分裂注意U形网络(DCSAU-NET),该网络有效地利用了基于两个新颖框架的低级和高级语义信息:主要功能保护和紧凑的分裂注意力堵塞。我们评估了CVC-ClinicDB,2018 Data Science Bowl,ISIC-2018和SEGPC-2021数据集的建议模型。结果,DCSAU-NET在联合(MIOU)和F1-SOCRE的平均交点方面显示出比其他最先进的方法(SOTA)方法更好的性能。更重要的是,提出的模型在具有挑战性的图像上表现出了出色的细分性能。我们的工作代码以及更多技术细节,请访问https://github.com/xq141839/dcsau-net。
translated by 谷歌翻译
组织学图像中核和腺体的实例分割是用于癌症诊断,治疗计划和生存分析的计算病理学工作流程中的重要一步。随着现代硬件的出现,大规模质量公共数据集的最新可用性以及社区组织的宏伟挑战已经看到了自动化方法的激增,重点是特定领域的挑战,这对于技术进步和临床翻译至关重要。在这项调查中,深入分析了过去五年(2017-2022)中发表的原子核和腺体实例细分的126篇论文,进行了深入分析,讨论了当前方法的局限性和公开挑战。此外,提出了潜在的未来研究方向,并总结了最先进方法的贡献。此外,还提供了有关公开可用数据集的概括摘要以及关于说明每种挑战的最佳性能方法的巨大挑战的详细见解。此外,我们旨在使读者现有研究的现状和指针在未来的发展方向上开发可用于临床实践的方法,从而可以改善诊断,分级,预后和癌症的治疗计划。据我们所知,以前没有工作回顾了朝向这一方向的组织学图像中的实例细分。
translated by 谷歌翻译
Transformers have made remarkable progress towards modeling long-range dependencies within the medical image analysis domain. However, current transformer-based models suffer from several disadvantages: (1) existing methods fail to capture the important features of the images due to the naive tokenization scheme; (2) the models suffer from information loss because they only consider single-scale feature representations; and (3) the segmentation label maps generated by the models are not accurate enough without considering rich semantic contexts and anatomical textures. In this work, we present CASTformer, a novel type of adversarial transformers, for 2D medical image segmentation. First, we take advantage of the pyramid structure to construct multi-scale representations and handle multi-scale variations. We then design a novel class-aware transformer module to better learn the discriminative regions of objects with semantic structures. Lastly, we utilize an adversarial training strategy that boosts segmentation accuracy and correspondingly allows a transformer-based discriminator to capture high-level semantically correlated contents and low-level anatomical features. Our experiments demonstrate that CASTformer dramatically outperforms previous state-of-the-art transformer-based approaches on three benchmarks, obtaining 2.54%-5.88% absolute improvements in Dice over previous models. Further qualitative experiments provide a more detailed picture of the model's inner workings, shed light on the challenges in improved transparency, and demonstrate that transfer learning can greatly improve performance and reduce the size of medical image datasets in training, making CASTformer a strong starting point for downstream medical image analysis tasks.
translated by 谷歌翻译
Clinical diagnostic and treatment decisions rely upon the integration of patient-specific data with clinical reasoning. Cancer presents a unique context that influence treatment decisions, given its diverse forms of disease evolution. Biomedical imaging allows noninvasive assessment of disease based on visual evaluations leading to better clinical outcome prediction and therapeutic planning. Early methods of brain cancer characterization predominantly relied upon statistical modeling of neuroimaging data. Driven by the breakthroughs in computer vision, deep learning became the de facto standard in the domain of medical imaging. Integrated statistical and deep learning methods have recently emerged as a new direction in the automation of the medical practice unifying multi-disciplinary knowledge in medicine, statistics, and artificial intelligence. In this study, we critically review major statistical and deep learning models and their applications in brain imaging research with a focus on MRI-based brain tumor segmentation. The results do highlight that model-driven classical statistics and data-driven deep learning is a potent combination for developing automated systems in clinical oncology.
translated by 谷歌翻译
对医学图像的器官或病变的准确分割对于可靠的疾病和器官形态计量学的可靠诊断至关重要。近年来,卷积编码器解码器解决方案在自动医疗图像分割领域取得了重大进展。由于卷积操作中的固有偏见,先前的模型主要集中在相邻像素形成的局部视觉提示上,但无法完全对远程上下文依赖性进行建模。在本文中,我们提出了一个新型的基于变压器的注意力指导网络,称为Transattunet,其中多层引导注意力和多尺度跳过连接旨在共同增强语义分割体系结构的性能。受到变压器的启发,具有变压器自我注意力(TSA)和全球空间注意力(GSA)的自我意识注意(SAA)被纳入Transattunet中,以有效地学习编码器特征之间的非本地相互作用。此外,我们还使用解码器块之间的其他多尺度跳过连接来汇总具有不同语义尺度的上采样功能。这样,多尺度上下文信息的表示能力就可以增强以产生判别特征。从这些互补组件中受益,拟议的Transattunet可以有效地减轻卷积层堆叠和连续采样操作引起的细节损失,最终提高医学图像的细分质量。来自不同成像方式的多个医疗图像分割数据集进行了广泛的实验表明,所提出的方法始终优于最先进的基线。我们的代码和预培训模型可在以下网址找到:https://github.com/yishuliu/transattunet。
translated by 谷歌翻译
医学成像的病变分割是临床研究中的一个重要课题。研究人员提出了各种检测和分段算法来解决这项任务。最近,基于深度学习的方法显着提高了传统方法的性能。然而,大多数最先进的深度学习方法需要手动设计多个网络组件和培训策略。在本文中,我们提出了一种新的自动化机器学习算法T-Automl,不仅搜索最佳神经结构,而且还可以同时找到超参数和数据增强策略的最佳组合。该方法采用现代变压器模型,引入了适应搜索空间嵌入的动态长度,并且可以显着提高搜索能力。我们在几个大型公共病变分割数据集上验证T-Automl并实现最先进的性能。
translated by 谷歌翻译