我们提出了GAAF(一种广义自动解剖器查找器),用于鉴定3D CT扫描中的通用解剖位置。GAAF是端到端管道,具有专用模块用于数据预处理,模型培训和推理。GAAF以核心使用自定义卷积神经网络(CNN)。CNN型号很小,轻巧,可以调整以适合特定应用。到目前为止,GAAF框架已经在头部和颈部进行了测试,并且能够找到解剖位置,例如脑干的质量中心。GAAF在开放式数据集中进行了评估,并且能够准确稳健地定位性能。我们所有的代码都是开源的,可在https://github.com/rrr-uom-projects/gaaf上找到。
translated by 谷歌翻译
腹部器官分割是一项艰巨且耗时的任务。为了减轻临床专家的负担,非常需要完全自动化的方法。当前的方法由卷积神经网络(CNN)主导,但是计算要求和对大数据集的需求限制了其在实践中的应用。通过实施小而高效的自定义3D CNN,编译训练的模型并优化计算图:我们的方法可产生高精度分割(骰子相似性系数(%):肝脏:97.3 $ \ pm 1.3,肾脏:94.8 $ \ pm $ 3.6,$ 3.6,,$ 3.6,,$ 3.6,,,$ 3.6,,,$ 3.6,,,$ 3.6,,$ \ pm $ 3.6,,肝气脾脏:96.4 $ \ pm $ 3.0,pancreas:80.9 $ \ pm $ 10.1),每张图像1.6秒。至关重要的是,我们能够仅在CPU上执行细分推断(无需GPU),从而在没有专家硬件的情况下便利地促进模型的简单和广泛部署。
translated by 谷歌翻译
目的:要开发和验证计算机工具,用于在计算机断层扫描(CT)扫描上描绘的上述组织的自动和同时分割的计算机工具:内脏脂肪(VAT),皮下脂肪(SAT),骨骼脂肪(IMAT),骨骼肌(SM)和骨头。方法:使用了从癌症成像档案(TCIA)获得的100 CT扫描的队列 - 50个全身正电子发射断层扫描(PET)-CTS,25胸和25腹部。手动注释五种不同的身体组合物(VAT,SAT,IMAT,SM和骨骼)。培训次训练策略用于效率。使用已经注释的案例训练了UNET模型。然后,该模型用于为剩余情况启用半自动注释。使用10倍的交叉验证方法来开发和验证几种卷积神经网络(CNNS)的性能,包括UNET,复发性残留的UNET(R2UNET)和UNET ++。在培训CNN模型时使用3-D贴片采样操作。测试了单独培训的CNN模型,看看它们是否可以达到更好的性能而不是共同分割它们。配对样品T检验用于测试统计显着性。结果:在三种CNN模型中,UNET在共同分割五个身体组合物中表现出最佳的整体性能,骰子系数为0.840 +/- 0.091,0.908 +/- 0.067,0.603 +/- 0.084,0.889 +/- 0.027,和0.884 +/- 0.031,Jaccard指数为0.734 +/- 0.119,0.837 +/- 0.096,0.437 +/- 0.082,0.800 +/- 0.042,0.793 +/- 0.049,分别用于增值税,SAT,IMAT, SM和骨头。结论:分段体组合物中的CNN模型中没有显着差异,但共同分段体组合物比分别分割更好的性能。
translated by 谷歌翻译
发现采用时间分离技术(TST)的基于模型的重建可以使用C臂锥束计算机断层扫描(CBCT)改善肝脏的动态灌注成像。要使用从CT灌注数据中提取的先验知识应用TST,应从CT扫描中准确分割肝脏。需要对主要和基于模型的CBCT数据进行重建,以正确可视化和解释灌注图。这项研究提出了Turbolift Learning,该学习按照培训CT,CBCT,CBCT,CBCT TST的顺序训练多尺度关注的多尺度注意力,UNET串行序列上的不同肝脏细分任务 - 使先前的培训作为前培训作为预训练阶段的阶段随后的问题 - 解决培训数据集数量有限的问题。对于CBCT TST的肝脏分割的最终任务,提议的方法的总骰子得分为0.874 $ \ pm $ 0.031和0.905 $ \ pm $ \ $ \ $ 0.007,分别为6倍和4倍的交叉验证实验 - 获得统计上显着的改进 - 在模型上,该模型仅接受该任务。实验表明,涡轮增压不仅提高了模型的整体性能,而且还使其与源自栓塞材料和截断物品的人工制品具有稳健性。此外,深入分析确认了分割任务的顺序。本文显示了从CT,CBCT和CBCT TST分割肝脏的潜力,从可用的有限培训数据中学习,将来可能会用于可视化和评估灌注图的肝病评估。 。
translated by 谷歌翻译
Quantitative cancer image analysis relies on the accurate delineation of tumours, a very specialised and time-consuming task. For this reason, methods for automated segmentation of tumours in medical imaging have been extensively developed in recent years, being Computed Tomography one of the most popular imaging modalities explored. However, the large amount of 3D voxels in a typical scan is prohibitive for the entire volume to be analysed at once in conventional hardware. To overcome this issue, the processes of downsampling and/or resampling are generally implemented when using traditional convolutional neural networks in medical imaging. In this paper, we propose a new methodology that introduces a process of sparsification of the input images and submanifold sparse convolutional networks as an alternative to downsampling. As a proof of concept, we applied this new methodology to Computed Tomography images of renal cancer patients, obtaining performances of segmentations of kidneys and tumours competitive with previous methods (~84.6% Dice similarity coefficient), while achieving a significant improvement in computation time (2-3 min per training epoch).
translated by 谷歌翻译
本文提出了第二版的头部和颈部肿瘤(Hecktor)挑战的概述,作为第24届医学图像计算和计算机辅助干预(Miccai)2021的卫星活动。挑战由三个任务组成与患有头颈癌(H&N)的患者的PET / CT图像的自动分析有关,专注于oropharynx地区。任务1是FDG-PET / CT图像中H&N主肿瘤肿瘤体积(GTVT)的自动分割。任务2是来自同一FDG-PET / CT的进展自由生存(PFS)的自动预测。最后,任务3与任务2的任务2与参与者提供的地面真理GTVT注释相同。这些数据从六个中心收集,总共325个图像,分为224个培训和101个测试用例。通过103个注册团队和448个结果提交的重要参与,突出了对挑战的兴趣。在第一任务中获得0.7591的骰子相似度系数(DSC),分别在任务2和3中的0.7196和0.6978的一致性指数(C-Index)。在所有任务中,发现这种方法的简单性是确保泛化性能的关键。 PFS预测性能在任务2和3中的比较表明,提供GTVT轮廓对于实现最佳结果,这表明可以使用完全自动方法。这可能避免了对GTVT轮廓的需求,用于可重复和大规模的辐射瘤研究的开头途径,包括千元潜在的受试者。
translated by 谷歌翻译
CT图像中的椎骨定位,分割和识别是众多临床应用的关键。尽管近年来,深度学习策略已为该领域带来了重大改进,但由于其在培训数据集中的代表性不佳,过渡性和病理椎骨仍在困扰大多数现有方法。另外,提出的基于非学习的方法可以利用先验知识来处理这种特定情况。在这项工作中,我们建议将这两种策略结合起来。为此,我们引入了一个迭代循环,在该循环中,单个椎骨被递归地定位,分割和使用深网鉴定,而使用统计先验则实施解剖一致性。在此策略中,通过在图形模型中编码其配置来处理过渡性椎骨识别,该模型将局部深网预测汇总为解剖上一致的最终结果。我们的方法在Verse20挑战基准上取得了最新的结果,并且优于过渡性椎骨的所有方法以及对Verse19挑战基准的概括。此外,我们的方法可以检测和报告不满足解剖学一致性先验的不一致的脊柱区域。我们的代码和模型公开用于研究目的。
translated by 谷歌翻译
头颈肿瘤分割挑战(Hecktor)2022为研究人员提供了一个平台,可以将其解决方案与3D CT和PET图像的肿瘤和淋巴结分割。在这项工作中,我们描述了针对Hecktor 2022分割任务的解决方案。我们将所有图像重新样本为共同的分辨率,在头颈部和颈部区域周围的作物,并从Monai训练Segresnet语义分割网络。我们使用5倍的交叉验证来选择最佳模型检查点。最终提交是3次运行中的15个型号的合奏。我们的解决方案(NVAUTO团队名称)以0.78802的汇总骰子得分在Hecktor22挑战排行榜上获得第一名。
translated by 谷歌翻译
自动化的腹部多器官分割是计算机辅助诊断腹部器官相关疾病的至关重要但具有挑战性的任务。尽管许多深度学习模型在许多医学图像分割任务中取得了显着的成功,但由于腹部器官的不同大小以及它们之间的含糊界限,腹部器官的准确分割仍然具有挑战性。在本文中,我们提出了一个边界感知网络(BA-NET),以分段CT扫描和MRI扫描进行腹部器官。该模型包含共享编码器,边界解码器和分割解码器。两个解码器都采用了多尺度的深度监督策略,这可以减轻可变器官尺寸引起的问题。边界解码器在每个量表上产生的边界概率图被用作提高分割特征图的注意。我们评估了腹部多器官细分(AMOS)挑战数据集的BA-NET,并获得了CT扫描的多器官分割的平均骰子分数为89.29 $ \%$,平均骰子得分为71.92 $ \%$ \%$ \% MRI扫描。结果表明,在两个分割任务上,BA-NET优于NNUNET。
translated by 谷歌翻译
U-NET一直是医疗图像分割任务的首选架构,但是将U-NET体系结构扩展到3D图像时会出现计算挑战。我们提出了隐式U-NET体系结构,该体系结构将有效的隐式表示范式适应监督的图像分割任务。通过将卷积特征提取器与隐式定位网络相结合,我们隐式U-NET的参数比等效的U-NET少40%。此外,我们提出了培训和推理程序,以利用稀疏的预测。与等效的完全卷积U-NET相比,隐式U-NET减少了约30%的推理和训练时间以及训练记忆足迹,同时在我们的两个不同的腹部CT扫描数据集中取得了可比的结果。
translated by 谷歌翻译
胰腺癌是与癌症相关死亡的全球主要原因之一。尽管深度学习在计算机辅助诊断和检测方法(CAD)方法中取得了成功,但很少关注胰腺癌的检测。我们提出了一种检测胰腺肿瘤的方法,该方法在周围的解剖结构中利用临床上的特征,从而更好地旨在利用放射科医生的知识,而不是其他常规的深度学习方法。为此,我们收集了一个新的数据集,该数据集由99例胰腺导管腺癌(PDAC)和97例没有胰腺肿瘤的对照病例组成。由于胰腺癌的生长模式,肿瘤可能总是可见为低音病变,因此,专家指的是二次外部特征的可见性,这些特征可能表明肿瘤的存在。我们提出了一种基于U-NET样深的CNN的方法,该方法利用以下外部次要特征:胰管,常见的胆管和胰腺以及处理后的CT扫描。使用这些功能,该模型如果存在胰腺肿瘤。这种用于分类和本地化方法的细分实现了99%的敏感性(一个案例)和99%的特异性,这比以前的最新方法的灵敏度增加了5%。与以前的PDAC检测方法相比,该模型还以合理的精度和较短的推理时间提供位置信息。这些结果提供了显着的性能改善,并强调了在开发新型CAD方法时纳入临床专家知识的重要性。
translated by 谷歌翻译
最近关于Covid-19的研究表明,CT成像提供了评估疾病进展和协助诊断的有用信息,以及帮助理解疾病。有越来越多的研究,建议使用深度学习来使用胸部CT扫描提供快速准确地定量Covid-19。兴趣的主要任务是胸部CT扫描的肺和肺病变的自动分割,确认或疑似Covid-19患者。在这项研究中,我们使用多中心数据集比较12个深度学习算法,包括开源和内部开发的算法。结果表明,合并不同的方法可以提高肺部分割,二元病变分割和多种子病变分割的总体测试集性能,从而分别为0.982,0.724和0.469的平均骰子分别。将得到的二元病变分段为91.3ml的平均绝对体积误差。通常,区分不同病变类型的任务更加困难,分别具有152mL的平均绝对体积差,分别为整合和磨碎玻璃不透明度为0.369和0.523的平均骰子分数。所有方法都以平均体积误差进行二元病变分割,该分段优于人类评估者的视觉评估,表明这些方法足以用于临床实践中使用的大规模评估。
translated by 谷歌翻译
开发了一个3D深度学习模型(OARNet)并用于在CT图像上描绘28 H&N OAR。 OARNET利用密集连接的网络来检测OAR边界盒,然后在盒子内划定OAR。它将来自任何层的信息重用到后续层,并使用跳过连接来组合来自不同密集块电平的信息来逐步提高描绘精度。培训最多使用最多28名专家手册划定(MD)桨从165 CTS划算。骰子相似度系数(DSC)和第95百分位HAUSDORFF距离(HD95)相对于MD评估了70个其他CT。对MD的平均值,最大和根平均方形剂量差异评估了70cts的56个。 oarnet与UANET,ANATOMYNET和MULTI-ATLAS分段(MAS)进行比较。使用95%置信区间的Wilcoxon签名级别测试用于评估意义。 Wilcoxon签署了排名测试表明,与UANET相比,OARNET改善了(P <0.05)DSC(23/28桨)和HD95(17/28)。 OARNet优于DSC(28/28)和HD95(27/28)的Anatomynet和MAS。与UANET相比,OARNET将中位数DSC改善至0.05和HD95,高达1.5mm。与Anatomynet和MAS相比,OARNET将中位数(DSC,HD95)改为高达(0.08,2.7mm)和(0.17,6.3mm)。 DoSimetry,Oarnet优于Uanet(Dmax 7/28; Dmean 10/28),Anatomynet(Dmax 21/28; Dmean 24/28)和MAS(Dmax 22/28; Dmean 21/28)。 DenSenet架构使用混合方法进行优化,该混合方法执行OAR特定的边界框检测,然后是要素识别。与其他自动描绘方法相比,Oarnet优于或等于所有几何(颞叶L,HD95)和28 H&N OAR的一个剂量(眼睛L,平均剂量)终点,并且优于或者等于所有OAR的Anatomynet和MAS。
translated by 谷歌翻译
Segmentation of lung tissue in computed tomography (CT) images is a precursor to most pulmonary image analysis applications. Semantic segmentation methods using deep learning have exhibited top-tier performance in recent years. This paper presents a fully automatic method for identifying the lungs in three-dimensional (3D) pulmonary CT images, which we call it Lung-Net. We conjectured that a significant deeper network with inceptionV3 units can achieve a better feature representation of lung CT images without increasing the model complexity in terms of the number of trainable parameters. The method has three main advantages. First, a U-Net architecture with InceptionV3 blocks is developed to resolve the problem of performance degradation and parameter overload. Then, using information from consecutive slices, a new data structure is created to increase generalization potential, allowing more discriminating features to be extracted by making data representation as efficient as possible. Finally, the robustness of the proposed segmentation framework was quantitatively assessed using one public database to train and test the model (LUNA16) and two public databases (ISBI VESSEL12 challenge and CRPF dataset) only for testing the model; each database consists of 700, 23, and 40 CT images, respectively, that were acquired with a different scanner and protocol. Based on the experimental results, the proposed method achieved competitive results over the existing techniques with Dice coefficient of 99.7, 99.1, and 98.8 for LUNA16, VESSEL12, and CRPF datasets, respectively. For segmenting lung tissue in CT images, the proposed model is efficient in terms of time and parameters and outperforms other state-of-the-art methods. Additionally, this model is publicly accessible via a graphical user interface.
translated by 谷歌翻译
头部和颈部(H \&N)肿瘤的分割和患者结果的预测对于患者的疾病诊断和治疗监测至关重要。强大的深度学习模型的当前发展受到缺乏大型多中心,多模态数据的阻碍,质量注释。 Miccai 2021头部和颈部肿瘤(Hecktor)分割和结果预测挑战产生了一种平台,用于比较氟 - 脱氧葡萄糖(FDG)-PET上的初级总体目标体积的分段方法和计算的断层摄影图像和预测H中的无进展生存对于细分任务,我们提出了一种基于编码器 - 解码器架构的新网络,具有完整的和跳过连接,以利用全尺度的低级和高级语义。此外,我们使用条件随机字段作为优化预测分段映射的后处理步骤。我们训练了多个用于肿瘤体积分割的神经网络,并且这些分段被整合在交叉验证中实现了0.75的平均骰子相似度系数,并在挑战测试数据集中实现了0.76。为了预测患者进展免费生存任务,我们提出了一种组合临床,辐射和深层学习特征的Cox比例危害回归。我们的生存预测模型在交叉验证中实现了0.82的一致性指数,并在挑战测试数据集中获得0.62。
translated by 谷歌翻译
早期检测改善了胰腺导管腺癌(PDAC)中的预后,但挑战,因为病变通常很小,并且在对比增强的计算断层扫描扫描(CE-CT)上定义很差。深度学习可以促进PDAC诊断,但是当前模型仍然无法识别小(<2cm)病变。在这项研究中,最先进的深度学习模型用于开发用于PDAC检测的自动框架,专注于小病变。另外,研究了整合周围解剖学的影响。 CE-CT来自119个病理验证的PDAC患者的群组和123名没有PDAC患者的队列用于训练NNUNET用于自动病变检测和分割(\ TEXTIT {NNUNET \ _t})。训练了两种额外的鼻塞,以研究解剖学积分的影响:(1)分割胰腺和肿瘤(\ yryit {nnunet \ _tp}),(2)分割胰腺,肿瘤和多周围的解剖结构(\ textit {nnunet \_多发性硬化症})。外部可公开的测试集用于比较三个网络的性能。 \ Textit {nnunet \ _ms}实现了最佳性能,在整个测试集的接收器操作特性曲线下的区域为0.91,肿瘤的0.88 <2cm,显示最先进的深度学习可以检测到小型PDAC和解剖信息的好处。
translated by 谷歌翻译
了解模型预测在医疗保健方面至关重要,以促进模型正确性的快速验证,并防止利用利用混淆变量的模型。我们介绍了体积医学图像中可解释的多种异常分类的挑战新任务,其中模型必须指示用于预测每个异常的区域。为了解决这项任务,我们提出了一个多实例学习卷积神经网络,AxialNet,允许识别每个异常的顶部切片。接下来我们将赫雷库姆纳入注意机制,识别子切片区域。我们证明,对于Axialnet,Hirescam的说明得到保证,以反映所用模型的位置,与Grad-Cam不同,有时突出不相关的位置。使用一种产生忠实解释的模型,我们旨在通过一种新颖的面具损失来改善模型的学习,利用赫克斯克姆和3D允许的区域来鼓励模型仅预测基于器官的异常,其中出现的异常。 3D允许的区域通过新方法,分区自动获得,其组合从放射学报告中提取的位置信息与通过形态图像处理获得的器官分割图。总体而言,我们提出了第一种模型,用于解释容量医学图像中的可解释的多异常预测,然后使用掩模损耗来实现36,316扫描的Rad-Chessct数据集中多个异常的器官定位提高33%,代表状态本领域。这项工作推进了胸部CT卷中多种异常模型的临床适用性。
translated by 谷歌翻译
使用卷积神经网络(CNNS)自动分割CT扫描中的器官 - AT风险(OARS),正在放疗工作流中。但是,这些细分仍需要在临床使用前进行临床医生的手动编辑和批准,这可能很耗时。这项工作的目的是开发一种工具,以自动识别3D OAR细分中的错误,而无需基础真相。我们的工具使用了结合CNN和图神经网络(GNN)的新型体系结构来利用分割的外观和形状。使用合成生成的腮腺分割数据集并使用逼真的轮廓错误的数据集对所提出的模型进行训练。通过消融测试评估我们的模型的有效性,评估了体系结构不同部分的功效,以及从无监督的借口任务中使用转移学习。我们最佳性能模型预测了腮腺上的错误,内部和外部错误的精度分别为85.0%和89.7%,召回66.5%和68.6%。该离线质量检查工具可以在临床途径中使用,有可能减少临床医生通过检测需要注意的区域来纠正轮廓的时间。我们所有的代码均可在https://github.com/rrr-uom-projects/contour_auto_qatool上公开获得。
translated by 谷歌翻译
迄今为止,迄今为止,众所周知,对广泛的互补临床相关任务进行了全面比较了医学图像登记方法。这限制了采用研究进展,以防止竞争方法的公平基准。在过去五年内已经探讨了许多新的学习方法,但优化,建筑或度量战略的问题非常适合仍然是开放的。 Learn2reg涵盖了广泛的解剖学:脑,腹部和胸部,方式:超声波,CT,MRI,群体:患者内部和患者内部和监督水平。我们为3D注册的培训和验证建立了较低的入境障碍,这帮助我们从20多个独特的团队中汇编了65多个单独的方法提交的结果。我们的互补度量集,包括稳健性,准确性,合理性和速度,使得能够独特地位了解当前的医学图像登记现状。进一步分析监督问题的转移性,偏见和重要性,主要是基于深度学习的方法的优越性,并将新的研究方向开放到利用GPU加速的常规优化的混合方法。
translated by 谷歌翻译
Automatic segmentation of kidney and kidney tumour in Computed Tomography (CT) images is essential, as it uses less time as compared to the current gold standard of manual segmentation. However, many hospitals are still reliant on manual study and segmentation of CT images by medical practitioners because of its higher accuracy. Thus, this study focuses on the development of an approach for automatic kidney and kidney tumour segmentation in contrast-enhanced CT images. A method based on Convolutional Neural Network (CNN) was proposed, where a 3D U-Net segmentation model was developed and trained to delineate the kidney and kidney tumour from CT scans. Each CT image was pre-processed before inputting to the CNN, and the effect of down-sampled and patch-wise input images on the model performance was analysed. The proposed method was evaluated on the publicly available 2021 Kidney and Kidney Tumour Segmentation Challenge (KiTS21) dataset. The method with the best performing model recorded an average training Dice score of 0.6129, with the kidney and kidney tumour Dice scores of 0.7923 and 0.4344, respectively. For testing, the model obtained a kidney Dice score of 0.8034, and a kidney tumour Dice score of 0.4713, with an average Dice score of 0.6374.
translated by 谷歌翻译