基于运输的指标和相关嵌入(转换)最近已用于模拟存在非线性结构或变化的信号类。在本文中,我们研究了具有广义的瓦斯汀度量的时间序列数据的测量特性,以及与它们在嵌入空间中签名的累积分布变换有关的几何形状。此外,我们展示了如何理解这种几何特征可以为某些时间序列分类器提供可解释性,并成为更强大的分类器的灵感。
translated by 谷歌翻译
本文使用签名的累积分布变换(SCDT)提出了一种新的端到端信号分类方法。我们采用基于运输的生成模型来定义分类问题。然后,我们利用SCDT的数学属性来使问题更容易在变换域中,并使用SCDT域中的最接近局部子空间(NLS)搜索算法求解未知样本的类。实验表明,所提出的方法提供了高精度的分类结果,同时又有数据效率,对分布样本的强大稳定性以及相对于深度学习端到端分类方法的计算复杂性而具有竞争力。在Python语言中的实现将其作为软件包Pytranskit(https://github.com/rohdelab/pytranskit)的一部分集成。
translated by 谷歌翻译
比较概率分布是许多机器学习算法的关键。最大平均差异(MMD)和最佳运输距离(OT)是在过去几年吸引丰富的关注的概率措施之间的两类距离。本文建立了一些条件,可以通过MMD规范控制Wassersein距离。我们的作品受到压缩统计学习(CSL)理论的推动,资源有效的大规模学习的一般框架,其中训练数据总结在单个向量(称为草图)中,该训练数据捕获与所考虑的学习任务相关的信息。在CSL中的现有结果启发,我们介绍了H \“较旧的较低限制的等距属性(H \”较旧的LRIP)并表明这家属性具有有趣的保证对压缩统计学习。基于MMD与Wassersein距离之间的关系,我们通过引入和研究学习任务的Wassersein可读性的概念来提供压缩统计学习的保证,即概率分布之间的某些特定于特定的特定度量,可以由Wassersein界定距离。
translated by 谷歌翻译
深度卷积神经网络(CNNS)广泛地被认为是最先进的通用端到端图像分类系统。然而,当训练数据受到限制时,它们众所周知,他们需要渲染方法计算得昂贵并且并不总是有效的数据增强策略。而不是使用数据增强策略来编码在机器学习中通常在机器学习中进行的修正,而我们建议通过利用氡累积分配变换(R-CDT)的某些数学属性来数学上增强切片 - Wasserstein空间中最近的子空间分类模型。最近引入的图像变换。我们证明,对于特定类型的学习问题,我们的数学解决方案在分类精度和计算复杂性方面具有深度CNN的数据增强,并且在有限的训练数据设置下特别有效。该方法简单,有效,计算高效,不迭代,不需要调整参数。实现我们的方法的Python代码可在https://github.com/rohdelab/mathemation_augmentation中获得。我们的方法是作为软件包Pytranskit的一部分,可在https://github.com/rohdelab/pytranskit中获得。
translated by 谷歌翻译
我们将最初在多维扩展和降低多元数据的降低领域发展为功能设置。我们专注于经典缩放和ISOMAP - 在这些领域中起重要作用的原型方法 - 并在功能数据分析的背景下展示它们的使用。在此过程中,我们强调了环境公制扮演的关键作用。
translated by 谷歌翻译
In this paper, we propose Wasserstein Isometric Mapping (Wassmap), a nonlinear dimensionality reduction technique that provides solutions to some drawbacks in existing global nonlinear dimensionality reduction algorithms in imaging applications. Wassmap represents images via probability measures in Wasserstein space, then uses pairwise Wasserstein distances between the associated measures to produce a low-dimensional, approximately isometric embedding. We show that the algorithm is able to exactly recover parameters of some image manifolds including those generated by translations or dilations of a fixed generating measure. Additionally, we show that a discrete version of the algorithm retrieves parameters from manifolds generated from discrete measures by providing a theoretical bridge to transfer recovery results from functional data to discrete data. Testing of the proposed algorithms on various image data manifolds show that Wassmap yields good embeddings compared with other global and local techniques.
translated by 谷歌翻译
生成对抗网络(GAN)是基于生成器和歧视器之间的两种玩家游戏的一类分配学习方法,通常可以根据未知与生成的生成的差异表示的变异表示形式来表达为Minmax问题。分布。我们通过开发针对差异的新变分表示,将结构传播的gans作为学习分布的数据效率框架。我们的理论表明,我们可以利用与与基础结构相关的Sigma-algebra的条件期望,将歧视空间缩小为对不变歧视空间的投影。此外,我们证明了鉴别空间的缩小必须伴随着结构化发电机的仔细设计,因为有缺陷的设计很容易导致学习分布的灾难性的“模式崩溃”。我们通过构建具有对称性的gan来进行固有的群体对称性分布来使我们的框架背景化,并证明两个参与者,即epoiriant发电机和不变歧视者,都在学习过程中扮演重要但独特的角色。跨广泛的数据集的经验实验和消融研究,包括现实世界的医学成像,验证我们的理论,并显示我们所提出的方法可显着提高样品保真度和多样性 - 几乎是在FR \'Echet Intection中衡量的数量级距离 - 尤其是在小型数据制度中。
translated by 谷歌翻译
我们使用签名的累积分布变换(SCDT)来描述一种信号参数估计的方法,这是一种基于最佳传输理论的最近引入的信号表示工具。该方法基于最初用于正分布引入的累积分布变换(CDT)的信号估计。具体而言,我们表明,可以简单地使用SCDT空间中的线性最小二乘技术来进行任意信号类别的线性最小二乘技术,从而为任意信号类别进行最小化,从而为估计问题提供了全局最小化,即使基础信号是未知参数的非线性函数,也为全局最小化。使用$ L_P $最小化与当前信号估计方法的比较显示了该方法的优势。
translated by 谷歌翻译
我们在非标准空间上介绍了积极的确定核的新类别,这些空间完全是严格的确定性或特征。特别是,我们讨论了可分离的希尔伯特空间上的径向内核,并在Banach空间和强型负类型的度量空间上引入了广泛的内核。一般结果用于在可分离的$ l^p $空间和一组措施上提供明确的核类。
translated by 谷歌翻译
假设我们在$ \ mathbb {r} ^ d $和predictor x中的响应变量y在$ \ mathbb {r} ^ d $,以便为$ d \ geq 1 $。在置换或未解释的回归中,我们可以访问x和y上的单独无序数据,而不是在通常回归中的(x,y)-pabes上的数据。到目前为止,在文献中,案件$ d = 1 $已收到关注,请参阅例如近期的纸张和杂草[信息和推理,8,619--717]和Balabdaoui等人。 [J.马赫。学习。 res,22(172),1-60]。在本文中,我们考虑使用$ d \ geq 1 $的一般多变量设置。我们表明回归函数的周期性单调性的概念足以用于置换/未解释的回归模型中的识别和估计。我们在允许的回归设置中研究置换恢复,并在基于Kiefer-WolfoItz的基于代索的计算高效且易用算法[ANN。数学。统计部。,27,887--906]非参数最大似然估计和来自最佳运输理论的技术。我们在高斯噪声的相关均方方向误差误差上提供显式上限。与之前的案件的工作$ d = 1 $一样,置换/未解释的设置涉及潜在的解卷积问题的慢速(对数)收敛率。数值研究证实了我们的理论分析,并表明所提出的方法至少根据上述事先工作中的方法进行了比例,同时在计算复杂性方面取得了大量减少。
translated by 谷歌翻译
大多数现代的潜在变量和概率生成模型,例如变异自动编码器(VAE),即使有无限的数据也无法解决,这些模型也无法解决。此类模型的最新应用表明需要强烈可识别的模型,其中观察结果与唯一的潜在代码相对应。在维持灵活性的同时,取得了进展,最著名的是IVAE(Arxiv:1907.04809 [stat.ml]),该模型排除了许多(但不是全部 - 不确定)。我们构建了一个完整的理论框架,用于分析潜在变量模型的不确定性,并根据生成器函数的属性和潜在变量先验分布精确表征它们。为了说明,我们应用框架以更好地了解最近的可识别性结果的结构。然后,我们研究如何指定强烈识别的潜在变量模型,并构建两个这样的模型。一种是对ivae的直接修饰。另一个想法从最佳运输和导致新颖的模型和连接到最近的工作。
translated by 谷歌翻译
我们介绍了一类小说的预计方法,对实际线上的概率分布数据集进行统计分析,具有2-Wassersein指标。我们特别关注主成分分析(PCA)和回归。为了定义这些模型,我们通过将数据映射到合适的线性空间并使用度量投影运算符来限制Wassersein空间中的结果来利用与其弱利米结构密切相关的Wasserstein空间的表示。通过仔细选择切线,我们能够推出快速的经验方法,利用受约束的B样条近似。作为我们方法的副产品,我们还能够为PCA的PCA进行更快的例程来获得分布。通过仿真研究,我们将我们的方法与先前提出的方法进行比较,表明我们预计的PCA具有类似的性能,即使在拼盘下也是极其灵活的。研究了模型的若干理论性质,并证明了渐近一致性。讨论了两个真实世界应用于美国和风速预测的Covid-19死亡率。
translated by 谷歌翻译
我们使用2-wasserstein空间的几何特性在一组概率度量之间发展了一个投影概念。它是为一般的多元概率度量而设计的,在计算上有效地实施,并在常规设置中提供了独特的解决方案。这个想法是使用广义的大地测量学处理瓦斯汀空间的常规切线锥。它的结构和计算属性使该方法适用于各种设置,从因果推断到对象数据的分析。估计因果效应的应用将合成控制的概念概括为具有个体级异质性的多元数据,以及一种在所有时间段内共同估算最佳权重的方法。
translated by 谷歌翻译
矢量值随机变量的矩序列可以表征其定律。我们通过使用所谓的稳健签名矩来研究路径值随机变量(即随机过程)的类似问题。这使我们能够为随机过程定律得出最大平均差异类型的度量,并研究其在随机过程定律方面引起的拓扑。可以使用签名内核对该度量进行内核,从而有效地计算它。作为应用程序,我们为随机过程定律提供了非参数的两样本假设检验。
translated by 谷歌翻译
最佳运输距离(OT)已广泛应用于最近的机器学习工作作为比较概率分布的方法。当数据在高尺寸处生存时,这些都是昂贵的。Paty等人的最新工作是,2019年,专门针对使用数据的低级别投影(视为离散措施)来降低这一成本。我们扩展了这种方法,并表明,通过使用更多地图的地图族可以近距离近距离近距离。通过在给定的家庭上最大化OT来获得最佳估计。随着在将数据映射到较低维度空间之后进行OT计算,我们的方法使用原始数据维度缩放。我们用神经网络展示了这个想法。
translated by 谷歌翻译
We study a family of adversarial multiclass classification problems and provide equivalent reformulations in terms of: 1) a family of generalized barycenter problems introduced in the paper and 2) a family of multimarginal optimal transport problems where the number of marginals is equal to the number of classes in the original classification problem. These new theoretical results reveal a rich geometric structure of adversarial learning problems in multiclass classification and extend recent results restricted to the binary classification setting. A direct computational implication of our results is that by solving either the barycenter problem and its dual, or the MOT problem and its dual, we can recover the optimal robust classification rule and the optimal adversarial strategy for the original adversarial problem. Examples with synthetic and real data illustrate our results.
translated by 谷歌翻译
Several problems in stochastic analysis are defined through their geometry, and preserving that geometric structure is essential to generating meaningful predictions. Nevertheless, how to design principled deep learning (DL) models capable of encoding these geometric structures remains largely unknown. We address this open problem by introducing a universal causal geometric DL framework in which the user specifies a suitable pair of geometries $\mathscr{X}$ and $\mathscr{Y}$ and our framework returns a DL model capable of causally approximating any ``regular'' map sending time series in $\mathscr{X}^{\mathbb{Z}}$ to time series in $\mathscr{Y}^{\mathbb{Z}}$ while respecting their forward flow of information throughout time. Suitable geometries on $\mathscr{Y}$ include various (adapted) Wasserstein spaces arising in optimal stopping problems, a variety of statistical manifolds describing the conditional distribution of continuous-time finite state Markov chains, and all Fr\'echet spaces admitting a Schauder basis, e.g. as in classical finance. Suitable, $\mathscr{X}$ are any compact subset of any Euclidean space. Our results all quantitatively express the number of parameters needed for our DL model to achieve a given approximation error as a function of the target map's regularity and the geometric structure both of $\mathscr{X}$ and of $\mathscr{Y}$. Even when omitting any temporal structure, our universal approximation theorems are the first guarantees that H\"older functions, defined between such $\mathscr{X}$ and $\mathscr{Y}$ can be approximated by DL models.
translated by 谷歌翻译
三角形流量,也称为kn \“{o}的Rosenblatt测量耦合,包括用于生成建模和密度估计的归一化流模型的重要构建块,包括诸如实值的非体积保存变换模型的流行自回归流模型(真实的NVP)。我们提出了三角形流量统计模型的统计保证和样本复杂性界限。特别是,我们建立了KN的统计一致性和kullback-leibler估算器的rospblatt的kullback-leibler估计的有限样本会聚率使用实证过程理论的工具测量耦合。我们的结果突出了三角形流动下播放功能类的各向异性几何形状,优化坐标排序,并导致雅各比比流动的统计保证。我们对合成数据进行数值实验,以说明我们理论发现的实际意义。
translated by 谷歌翻译
We describe a measure quantization procedure i.e., an algorithm which finds the best approximation of a target probability law (and more generally signed finite variation measure) by a sum of Q Dirac masses (Q being the quantization parameter). The procedure is implemented by minimizing the statistical distance between the original measure and its quantized version; the distance is built from a negative definite kernel and, if necessary, can be computed on the fly and feed to a stochastic optimization algorithm (such as SGD, Adam, ...). We investigate theoretically the fundamental questions of existence of the optimal measure quantizer and identify what are the required kernel properties that guarantee suitable behavior. We test the procedure, called HEMQ, on several databases: multi-dimensional Gaussian mixtures, Wiener space cubature, Italian wine cultivars and the MNIST image database. The results indicate that the HEMQ algorithm is robust and versatile and, for the class of Huber-energy kernels, it matches the expected intuitive behavior.
translated by 谷歌翻译
我们在非参数二进制分类的一个对抗性训练问题之间建立了等价性,以及规范器是非识别范围功能的正则化风险最小化问题。由此产生的正常风险最小化问题允许在图像分析和基于图形学习中常常研究的$ L ^ 1 + $(非本地)$ \ Operatorvers {TV} $的精确凸松弛。这种重构揭示了丰富的几何结构,这反过来允许我们建立原始问题的最佳解决方案的一系列性能,包括存在最小和最大解决方案(以合适的意义解释),以及常规解决方案的存在(也以合适的意义解释)。此外,我们突出了对抗性训练和周长最小化问题的联系如何为涉及周边/总变化的正规风险最小化问题提供一种新颖的直接可解释的统计动机。我们的大部分理论结果与用于定义对抗性攻击的距离无关。
translated by 谷歌翻译