贝叶斯优化是一种数据高效技术,可用于机器人中的控制参数调整,参数策略适应和结构设计。这些问题中的许多问题需要优化在非欧几里德域上定义的函数,如球体,旋转组或正向矩阵的空间。为此,必须在感兴趣的空间内之前或等效地定义内核的高斯进程。有效内核通常反映它们定义的空间的几何形状,但设计它们通常是非微不足道的。基于随机部分微分方程和Laplace-Beltrami运营商的频谱理论,最近在Riemannian Mat'En内核的工作,提供了朝向构建此类几何感知内核的承诺途径。在本文中,我们研究了在机器人中的兴趣流动上实施这些内核的技术,展示了它们在一组人工基准函数上的性能,并说明了各种机器人应用的几何感知贝叶斯优化,覆盖方向控制,可操纵性优化,和运动规划,同时显示其提高性能。
translated by 谷歌翻译
高斯过程可以说是空间统计中最重要的模型类别。他们编码有关建模功能的先前信息,可用于精确或近似贝叶斯推断。在许多应用中,尤其是在物理科学和工程中,以及在诸如地统计和神经科学等领域,对对称性的不变性是人们可以考虑的先前信息的最基本形式之一。高斯工艺与这种对称性的协方差的不变性导致了对此类空间平稳性概念的最自然概括。在这项工作中,我们开发了建设性和实用的技术,用于在在对称的背景下产生的一大批非欧基人空间上构建固定的高斯工艺。我们的技术使(i)以实用的方式计算(i)计算在此类空间上定义的先验和后高斯过程中的协方差内核和(ii)。这项工作分为两部分,每个部分涉及不同的技术考虑:第一部分研究紧凑的空间,而第二部分研究的非紧密空间具有某些结构。我们的贡献使我们研究的非欧亚人高斯流程模型与标准高斯流程软件包中可用的良好计算技术兼容,从而使从业者可以访问它们。
translated by 谷歌翻译
We propose a principled way to define Gaussian process priors on various sets of unweighted graphs: directed or undirected, with or without loops. We endow each of these sets with a geometric structure, inducing the notions of closeness and symmetries, by turning them into a vertex set of an appropriate metagraph. Building on this, we describe the class of priors that respect this structure and are analogous to the Euclidean isotropic processes, like squared exponential or Mat\'ern. We propose an efficient computational technique for the ostensibly intractable problem of evaluating these priors' kernels, making such Gaussian processes usable within the usual toolboxes and downstream applications. We go further to consider sets of equivalence classes of unweighted graphs and define the appropriate versions of priors thereon. We prove a hardness result, showing that in this case, exact kernel computation cannot be performed efficiently. However, we propose a simple Monte Carlo approximation for handling moderately sized cases. Inspired by applications in chemistry, we illustrate the proposed techniques on a real molecular property prediction task in the small data regime.
translated by 谷歌翻译
高斯工艺是能够以代表不确定性的方式学习未知功能的机器学习模型,从而促进了最佳决策系统的构建。由于渴望部署新颖的科学领域的高斯过程,一种迅速增长的研究线路集中于建设性地扩展这些模型来处理非欧几里德域,包括黎曼歧管,例如球形和托尔。我们提出了概括这一类的技术,以模拟黎曼歧管上的矢量字段,这在物理科学中的许多应用领域都很重要。为此,我们介绍了构建规范独立核的一般配方,它诱导高斯矢量字段,即矢量值高斯工艺与几何形状相干,从标量值riemannian内核。我们扩展了标准高斯过程培训方法,例如变分推理,以此设置。这使得旨在使用标准方法培训的Riemannian歧管上的矢量值高斯流程,并使它们可以访问机器学习从业者。
translated by 谷歌翻译
在本章中,我们确定了基本的几何结构,这些几何结构是采样,优化,推理和自适应决策问题的基础。基于此识别,我们得出了利用这些几何结构来有效解决这些问题的算法。我们表明,在这些领域中自然出现了广泛的几何理论,范围从测量过程,信息差异,泊松几何和几何整合。具体而言,我们解释了(i)如何利用汉密尔顿系统的符合性几何形状,使我们能够构建(加速)采样和优化方法,(ii)希尔伯特亚空间和Stein操作员的理论提供了一种通用方法来获得可靠的估计器,(iii)(iii)(iii)保留决策的信息几何形状会产生执行主动推理的自适应剂。在整个过程中,我们强调了这些领域之间的丰富联系。例如,推论借鉴了抽样和优化,并且自适应决策通过推断其反事实后果来评估决策。我们的博览会提供了基本思想的概念概述,而不是技术讨论,可以在本文中的参考文献中找到。
translated by 谷歌翻译
We propose an extrinsic Bayesian optimization (eBO) framework for general optimization problems on manifolds. Bayesian optimization algorithms build a surrogate of the objective function by employing Gaussian processes and quantify the uncertainty in that surrogate by deriving an acquisition function. This acquisition function represents the probability of improvement based on the kernel of the Gaussian process, which guides the search in the optimization process. The critical challenge for designing Bayesian optimization algorithms on manifolds lies in the difficulty of constructing valid covariance kernels for Gaussian processes on general manifolds. Our approach is to employ extrinsic Gaussian processes by first embedding the manifold onto some higher dimensional Euclidean space via equivariant embeddings and then constructing a valid covariance kernel on the image manifold after the embedding. This leads to efficient and scalable algorithms for optimization over complex manifolds. Simulation study and real data analysis are carried out to demonstrate the utilities of our eBO framework by applying the eBO to various optimization problems over manifolds such as the sphere, the Grassmannian, and the manifold of positive definite matrices.
translated by 谷歌翻译
解决逆运动学问题是针对清晰机器人的运动计划,控制和校准的基本挑战。这些机器人的运动学模型通常通过关节角度进行参数化,从而在机器人构型和最终效果姿势之间产生复杂的映射。或者,可以使用机器人附加点之间的不变距离来表示运动学模型和任务约束。在本文中,我们将基于距离的逆运动学的等效性和大量铰接式机器人和任务约束的距离几何问题进行形式化。与以前的方法不同,我们使用距离几何形状和低级别矩阵完成之间的连接来通过局部优化完成部分欧几里得距离矩阵来找到逆运动学解决方案。此外,我们用固定级革兰氏矩阵的Riemannian歧管来参数欧几里得距离矩阵的空间,从而使我们能够利用各种成熟的Riemannian优化方法。最后,我们表明,绑定的平滑性可用于生成知情的初始化,而无需大量的计算开销,从而改善收敛性。我们证明,我们的逆运动求解器比传统技术获得更高的成功率,并且在涉及许多工作区约束的问题上大大优于它们。
translated by 谷歌翻译
我们介绍了CheBlieset,一种对(各向异性)歧管的组成的方法。对基于GRAP和基于组的神经网络的成功进行冲浪,我们利用了几何深度学习领域的最新发展,以推导出一种新的方法来利用数据中的任何各向异性。通过离散映射的谎言组,我们开发由各向异性卷积层(Chebyshev卷积),空间汇集和解凝层制成的图形神经网络,以及全球汇集层。集团的标准因素是通过具有各向异性左不变性的黎曼距离的图形上的等级和不变的运算符来实现的。由于其简单的形式,Riemannian公制可以在空间和方向域中模拟任何各向异性。这种对Riemannian度量的各向异性的控制允许平衡图形卷积层的不变性(各向异性度量)的平衡(各向异性指标)。因此,我们打开大门以更好地了解各向异性特性。此外,我们经验证明了在CIFAR10上的各向异性参数的存在(数据依赖性)甜点。这一关键的结果是通过利用数据中的各向异性属性来获得福利的证据。我们还评估了在STL10(图像数据)和ClimateNet(球面数据)上的这种方法的可扩展性,显示了对不同任务的显着适应性。
translated by 谷歌翻译
诸如操纵器之类的铰接机器人必须在不确定和动态的环境中运行,例如,相互作用(例如与人类同事)是必要的。在这种情况下,必须快速适应操作空间限制的意外变化的能力至关重要。在操纵器的配置空间中的某些点(称为奇异点),机器人失去了一个或多个自由度(DOF),并且无法在特定的操作空间方向上移动。无法在操作空间中朝任意方向移动会损害适应性和安全性。我们引入了一个几何感知奇异性索引,该索引在对称正定定义矩阵上使用Riemannian度量定义,以提供与奇异构型的接近度的度量。我们证明我们的索引避免了其他共同指数固有的某些故障模式和困难。此外,我们表明该索引可以轻松区分,使其与用于操作空间控制的局部优化方法兼容。我们的实验结果表明,对于遵循任务的到达和路径,基于我们的索引优化优于一种常见的可操作性最大化技术,并确保奇异性运动动作。
translated by 谷歌翻译
量子哈密顿学习和量子吉布斯采样的双重任务与物理和化学中的许多重要问题有关。在低温方案中,这些任务的算法通常会遭受施状能力,例如因样本或时间复杂性差而遭受。为了解决此类韧性,我们将量子自然梯度下降的概括引入了参数化的混合状态,并提供了稳健的一阶近似算法,即量子 - 固定镜下降。我们使用信息几何学和量子计量学的工具证明了双重任务的数据样本效率,因此首次将经典Fisher效率的开创性结果推广到变异量子算法。我们的方法扩展了以前样品有效的技术,以允许模型选择的灵活性,包括基于量子汉密尔顿的量子模型,包括基于量子的模型,这些模型可能会规避棘手的时间复杂性。我们的一阶算法是使用经典镜下降二元性的新型量子概括得出的。两种结果都需要特殊的度量选择,即Bogoliubov-Kubo-Mori度量。为了从数值上测试我们提出的算法,我们将它们的性能与现有基准进行了关于横向场ISING模型的量子Gibbs采样任务的现有基准。最后,我们提出了一种初始化策略,利用几何局部性来建模状态的序列(例如量子 - 故事过程)的序列。我们从经验上证明了它在实际和想象的时间演化的经验上,同时定义了更广泛的潜在应用。
translated by 谷歌翻译
在本文中,我们提出了一种学习稳定的动力学系统的方法,该系统在里曼尼亚歧管上不断发展。该方法利用数据效率的程序来学习差异转换,该过程将简单的稳定动力系统映射到复杂的机器人技能上。通过从差异几何形状中利用数学工具,该方法可确保学习的技能满足基础歧管所施加的几何约束,例如用于方向和SPD的刚度矩阵,同时将逆转性保留到给定的目标。首先在公共基准上的模拟中测试了所提出的方法,该方法通过将笛卡尔数据投射到UQ和SPD歧管中,并与现有方法进行了比较。除了评估公共基准测试的方法外,还对在不同条件下进行瓶子的真正机器人进行了几项实验,并与人类操作员合作进行了钻井任务。评估在学习准确性和任务适应能力方面显示出令人鼓舞的结果。
translated by 谷歌翻译
我们研究无限制的黎曼优化的免投影方法。特别是,我们提出了黎曼弗兰克 - 沃尔夫(RFW)方法。我们将RFW的非渐近收敛率分析为最佳(高音)凸起问题,以及非凸起目标的临界点。我们还提出了一种实用的设置,其中RFW可以获得线性收敛速度。作为一个具体的例子,我们将RFW专用于正定矩阵的歧管,并将其应用于两个任务:(i)计算矩阵几何平均值(riemannian质心); (ii)计算Bures-Wasserstein重心。这两个任务都涉及大量凸间间隔约束,为此,我们表明RFW要求的Riemannian“线性”Oracle承认了闭合形式的解决方案;该结果可能是独立的兴趣。我们进一步专门从事RFW到特殊正交组,并表明这里也可以以封闭形式解决riemannian“线性”甲骨文。在这里,我们描述了数据矩阵同步的应用程序(促使问题)。我们补充了我们的理论结果,并对RFW对最先进的riemananian优化方法进行了实证比较,并观察到RFW竞争性地对计算黎曼心质的任务进行竞争性。
translated by 谷歌翻译
Many problems in robotics are fundamentally problems of geometry, which lead to an increased research effort in geometric methods for robotics in recent years. The results were algorithms using the various frameworks of screw theory, Lie algebra and dual quaternions. A unification and generalization of these popular formalisms can be found in geometric algebra. The aim of this paper is to showcase the capabilities of geometric algebra when applied to robot manipulation tasks. In particular the modelling of cost functions for optimal control can be done uniformly across different geometric primitives leading to a low symbolic complexity of the resulting expressions and a geometric intuitiveness. We demonstrate the usefulness, simplicity and computational efficiency of geometric algebra in several experiments using a Franka Emika robot. The presented algorithms were implemented in c++20 and resulted in the publicly available library \textit{gafro}. The benchmark shows faster computation of the kinematics than state-of-the-art robotics libraries.
translated by 谷歌翻译
Dexterous and autonomous robots should be capable of executing elaborated dynamical motions skillfully. Learning techniques may be leveraged to build models of such dynamic skills. To accomplish this, the learning model needs to encode a stable vector field that resembles the desired motion dynamics. This is challenging as the robot state does not evolve on a Euclidean space, and therefore the stability guarantees and vector field encoding need to account for the geometry arising from, for example, the orientation representation. To tackle this problem, we propose learning Riemannian stable dynamical systems (RSDS) from demonstrations, allowing us to account for different geometric constraints resulting from the dynamical system state representation. Our approach provides Lyapunov-stability guarantees on Riemannian manifolds that are enforced on the desired motion dynamics via diffeomorphisms built on neural manifold ODEs. We show that our Riemannian approach makes it possible to learn stable dynamical systems displaying complicated vector fields on both illustrative examples and real-world manipulation tasks, where Euclidean approximations fail.
translated by 谷歌翻译
本文通过引入几何深度学习(GDL)框架来构建通用馈电型型模型与可区分的流形几何形状兼容的通用馈电型模型,从而解决了对非欧国人数据进行处理的需求。我们表明,我们的GDL模型可以在受控最大直径的紧凑型组上均匀地近似任何连续目标函数。我们在近似GDL模型的深度上获得了最大直径和上限的曲率依赖性下限。相反,我们发现任何两个非分类紧凑型歧管之间始终都有连续的函数,任何“局部定义”的GDL模型都不能均匀地近似。我们的最后一个主要结果确定了数据依赖性条件,确保实施我们近似的GDL模型破坏了“维度的诅咒”。我们发现,任何“现实世界”(即有限)数据集始终满足我们的状况,相反,如果目标函数平滑,则任何数据集都满足我们的要求。作为应用,我们确认了以下GDL模型的通用近似功能:Ganea等。 (2018)的双波利馈电网络,实施Krishnan等人的体系结构。 (2015年)的深卡尔曼 - 滤波器和深度玛克斯分类器。我们构建了:Meyer等人的SPD-Matrix回归剂的通用扩展/变体。 (2011)和Fletcher(2003)的Procrustean回归剂。在欧几里得的环境中,我们的结果暗示了Kidger和Lyons(2020)的近似定理和Yarotsky和Zhevnerchuk(2019)无估计近似率的数据依赖性版本的定量版本。
translated by 谷歌翻译
本文介绍了一组数字方法,用于在不变(弹性)二阶Sobolev指标的设置中对3D表面进行Riemannian形状分析。更具体地说,我们解决了代表为3D网格的参数化或未参数浸入式表面之间的测量学和地球距离的计算。在此基础上,我们为表面集的统计形状分析开发了工具,包括用于估算Karcher均值并在形状群体上执行切线PCA的方法,以及计算沿表面路径的平行传输。我们提出的方法从根本上依赖于通过使用Varifold Fidelity术语来为地球匹配问题提供轻松的变异配方,这使我们能够在计算未参数化表面之间的地理位置时强制执行重新训练的独立性,同时还可以使我们能够与多用途算法相比,使我们能够将表面与vare表面进行比较。采样或网状结构。重要的是,我们演示了如何扩展放松的变分框架以解决部分观察到的数据。在合成和真实的各种示例中,说明了我们的数值管道的不同好处。
translated by 谷歌翻译
指数族在机器学习中广泛使用,包括连续和离散域中的许多分布(例如,通过SoftMax变换,Gaussian,Dirichlet,Poisson和分类分布)。这些家庭中的每个家庭的分布都有固定的支持。相比之下,对于有限域而言,最近在SoftMax稀疏替代方案(例如Sparsemax,$ \ alpha $ -entmax和Fusedmax)的稀疏替代方案中导致了带有不同支持的分布。本文基于几种技术贡献,开发了连续分布的稀疏替代方案:首先,我们定义了$ \ omega $ regultion的预测图和任意域的Fenchel-young损失(可能是无限或连续的)。对于线性参数化的家族,我们表明,Fenchel-Young损失的最小化等效于统计的矩匹配,从而概括了指数家族的基本特性。当$ \ omega $是带有参数$ \ alpha $的Tsallis negentropy时,我们将获得````trabormed rompential指数)'',其中包括$ \ alpha $ -entmax和sparsemax和sparsemax($ \ alpha = 2 $)。对于二次能量函数,产生的密度为$ \ beta $ -Gaussians,椭圆形分布的实例,其中包含特殊情况,即高斯,双重量级,三人级和epanechnikov密度,我们为差异而得出了差异的封闭式表达式, Tsallis熵和Fenchel-Young损失。当$ \ Omega $是总变化或Sobolev正常化程序时,我们将获得Fusedmax的连续版本。最后,我们引入了连续的注意机制,从\ {1、4/3、3/3、3/2、2 \} $中得出有效的梯度反向传播算法。使用这些算法,我们证明了我们的稀疏连续分布,用于基于注意力的音频分类和视觉问题回答,表明它们允许参加时间间隔和紧凑区域。
translated by 谷歌翻译
在非参数回归中,落在欧几里德空间的限制子集中是常见的。基于典型的内核的方法,不考虑收集观察的域的内在几何学可能产生次优效果。在本文中,我们专注于在高斯过程(GP)模型的背景下解决这个问题,提出了一种新的基于Graplacian的GPS(GL-GPS),该GPS(GL-GPS),该GPS(GL-GPS)学习尊重输入域几何的协方差。随着热核的难以计算地,我们使用Prop Laplacian(GL)的有限许多特征方来近似协方差。 GL由内核构成,仅取决于输入的欧几里德坐标。因此,我们可以从关于内核的完整知识中受益,以通过NYSTR \“{o} M型扩展来将协方差结构扩展到新到达的样本。我们为GL-GP方法提供了实质性的理论支持,并说明了性能提升各种应用。
translated by 谷歌翻译
Normalizing flows provide a general mechanism for defining expressive probability distributions, only requiring the specification of a (usually simple) base distribution and a series of bijective transformations. There has been much recent work on normalizing flows, ranging from improving their expressive power to expanding their application. We believe the field has now matured and is in need of a unified perspective. In this review, we attempt to provide such a perspective by describing flows through the lens of probabilistic modeling and inference. We place special emphasis on the fundamental principles of flow design, and discuss foundational topics such as expressive power and computational trade-offs. We also broaden the conceptual framing of flows by relating them to more general probability transformations. Lastly, we summarize the use of flows for tasks such as generative modeling, approximate inference, and supervised learning.
translated by 谷歌翻译
Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them.Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field.
translated by 谷歌翻译