3D点云语义细分对于自动驾驶至关重要。文献中的大多数方法都忽略了一个重要方面,即在处理动态场景时如何处理域转移。这可能会极大地阻碍自动驾驶车辆的导航能力。本文推进了该研究领域的最新技术。我们的第一个贡献包括分析点云细分中的新的未开发的方案,即无源的在线无监督域改编(SF-OUDA)。我们在实验上表明,最新的方法具有相当有限的能力,可以使预训练的深网模型以在线方式看不到域。我们的第二个贡献是一种依赖于自适应自我训练和几何传播的方法,以在线调整预训练的源模型,而无需源数据或目标标签。我们的第三个贡献是在一个充满挑战的设置中研究sf-ouda,其中源数据是合成的,目标数据是现实世界中捕获的点云。我们将最近的Synlidar数据集用作合成源,并引入了两个新的合成(源)数据集,这些数据集可以刺激未来的综合自动驾驶研究。我们的实验显示了我们分割方法对数千个现实点云的有效性。代码和合成数据集可在https://github.com/saltoricristiano/gipso-sfouda上找到。
translated by 谷歌翻译
3D激光雷达语义细分对于自动驾驶是基础。最近已经提出了几种用于点云数据的无监督域适应性(UDA)方法,以改善不同传感器和环境的模型概括。研究图像域中研究UDA问题的研究人员表明,样品混合可以减轻域的转移。我们提出了一种针对点云UDA的样品混合的新方法,即组成语义混合(Cosmix),这是基于样品混合的第一种UDA方法。 Cosmix由一个两分支对称网络组成,该网络可以同时处理标记的合成数据(源)和现实世界中未标记的点云(目标)。每个分支通过从另一个域中混合选定的数据来在一个域上运行,并使用源标签和目标伪标签的语义信息。我们在两个大规模数据集上评估Cosmix,表明它的表现要优于最先进的方法。我们的代码可在https://github.com/saltoricristiano/cosmix-uda上找到。
translated by 谷歌翻译
当标签稀缺时,域的适应性是使学习能够学习的重要任务。尽管大多数作品仅着眼于图像模式,但有许多重要的多模式数据集。为了利用多模式的域适应性,我们提出了跨模式学习,在这种学习中,我们通过相互模仿在两种模式的预测之间执行一致性。我们限制了我们的网络,以对未标记的目标域数据进行正确预测,并在标记的数据和跨模式的一致预测中进行预测。在无监督和半监督的域适应设置中进行的实验证明了这种新型域适应策略的有效性。具体而言,我们评估了从2D图像,3D点云或两者都从3D语义分割的任务进行评估。我们利用最近的驾驶数据集生产各种域名适应场景,包括场景布局,照明,传感器设置和天气以及合成到现实的设置的变化。我们的方法在所有适应方案上都显着改善了以前的单模式适应基线。我们的代码可在https://github.com/valeoai/xmuda_journal上公开获取
translated by 谷歌翻译
3D autonomous driving semantic segmentation using deep learning has become, a well-studied subject, providing methods that can reach very high performance. Nonetheless, because of the limited size of the training datasets, these models cannot see every type of object and scenes found in real-world applications. The ability to be reliable in these various unknown environments is called domain generalization. Despite its importance, domain generalization is relatively unexplored in the case of 3D autonomous driving semantic segmentation. To fill this gap, this paper presents the first benchmark for this application by testing state-of-the-art methods and discussing the difficulty of tackling LiDAR domain shifts. We also propose the first method designed to address this domain generalization, which we call 3DLabelProp. This method relies on leveraging the geometry and sequentiality of the LiDAR data to enhance its generalization performances by working on partially accumulated point clouds. It reaches a mIoU of 52.6% on SemanticPOSS while being trained only on SemanticKITTI, making it state-of-the-art method for generalization (+7.4% better than the second best method). The code for this method will be available on Github.
translated by 谷歌翻译
无监督的域对点云语义分割的适应性引起了极大的关注,因为它在没有标记的数据中学习有效性。大多数现有方法都使用全局级特征对齐方式将知识从源域转移到目标域,这可能会导致特征空间的语义歧义。在本文中,我们提出了一个基于图形的框架,以探索两个域之间的局部特征对齐,可以在适应过程中保留语义歧视。具体而言,为了提取本地级特征,我们首先在两个域上动态构建本地特征图,并使用来自源域的图形构建存储库。特别是,我们使用最佳传输来生成图形匹配对。然后,基于分配矩阵,我们可以将两个域之间的特征分布与基于图的本地特征损失对齐。此外,我们考虑了不同类别的特征之间的相关性,并制定了类别引导的对比损失,以指导分割模型以学习目标域上的区分特征。对不同的合成到现实和真实域的适应情景进行了广泛的实验表明,我们的方法可以实现最先进的性能。
translated by 谷歌翻译
弱监督的点云语义分割方法需要1 \%或更少的标签,希望实现与完全监督的方法几乎相同的性能,这些方法最近引起了广泛的研究关注。该框架中的一个典型解决方案是使用自我训练或伪标记来从点云本身挖掘监督,但忽略了图像中的关键信息。实际上,在激光雷达场景中广泛存在相机,而这种互补信息对于3D应用似乎非常重要。在本文中,我们提出了一种用于3D分割的新型交叉模式弱监督的方法,并结合了来自未标记图像的互补信息。基本上,我们设计了一个配备有效标签策略的双分支网络,以最大程度地发挥标签的力量,并直接实现2D到3D知识转移。之后,我们以期望最大(EM)的视角建立了一个跨模式的自我训练框架,该框架在伪标签估计和更新参数之间进行了迭代。在M-Step中,我们提出了一个跨模式关联学习,通过增强3D点和2D超级像素之间的周期矛盾性,从图像中挖掘互补的监督。在E-Step中,伪标签的自我校准机制被得出过滤噪声标签,从而为网络提供了更准确的标签,以进行全面训练。广泛的实验结果表明,我们的方法甚至优于最先进的竞争对手,而少于1 \%的主动选择注释。
translated by 谷歌翻译
作为一种流行的几何表示,点云在3D视觉中引起了很多关注,导致自动驾驶和机器人中的许多应用。在点云上学习一个重要的尚未解决的问题是,如果使用不同的过程或使用不同的传感器捕获,则相同对象的点云可以具有显着的几何变化。这些不一致地诱导域间隙,使得在一个域上培训的神经网络可能无法概括他人。减少域间隙的典型技术是执行逆势训练,以便特征空间中的点云可以对齐。然而,对抗性训练易于落入退化的局部最小值,导致负适应性收益。在这里,我们提出了一种简单而有效的方法,可以通过采用学习几何感知含义的自我监督任务来提出对点云的无监督域适应的方法,这在一次拍摄中扮演两个关键角色。首先,通过对下游任务的隐式表示保留点云中的几何信息。更重要的是,可以在隐式空间中有效地学习域特定变体。我们还提出了一种自适应策略,以计算由于在实践中缺乏形状模型而计算任意点云的无符号距离场。当结合任务丢失时,所提出的优先表现出最先进的无监督域适应方法,依赖于对抗域对齐和更复杂的自我监督任务。我们的方法在PointDA-10和Graspnet数据集上进行评估。代码和培训的型号将公开可用。
translated by 谷歌翻译
将从标记的源域中学习的知识传输到未经监督域适应的原始目标域(UDA)对于自主驱动系统的可扩展部署至关重要。 UDA中最先进的方法经常采用关键概念:利用来自源域(带地理)的联合监督信号和目标域(带伪标签)进行自培训。在这项工作中,我们在这方面改进并延伸。我们介绍了Conda,一种基于连接的域改性框架,用于LIDAR语义分割,:(1)构建由来自源极和目标域的细粒度交换信号组成的中间域,而不会破坏自我周围物体和背景的语义一致性。车辆; (2)利用中级领域进行自我培训。此外,为了改善源域的网络培训和中间域的自我训练,我们提出了一种抗锯齿规范器和熵聚合器,以减少混叠伪影和嘈杂的目标预测的不利影响。通过广泛的实验,我们证明,与现有技术相比,公园在减轻域间隙方面明显更有效。
translated by 谷歌翻译
点云的Panoptic分割是一种重要的任务,使自动车辆能够使用高精度可靠的激光雷达传感器来理解其附近。现有的自上而下方法通过将独立的任务特定网络或转换方法从图像域转换为忽略激光雷达数据的复杂性,因此通常会导致次优性性能来解决这个问题。在本文中,我们提出了新的自上而下的高效激光乐光线分割(有效的LID)架构,该架构解决了分段激光雷达云中的多种挑战,包括距离依赖性稀疏性,严重的闭塞,大规模变化和重新投影误差。高效地板包括一种新型共享骨干,可以通过加强的几何变换建模容量进行编码,并聚合语义丰富的范围感知多尺度特征。它结合了新的不变语义和实例分段头以及由我们提出的Panoptic外围损耗功能监督的Panoptic Fusion模块。此外,我们制定了正则化的伪标签框架,通过对未标记数据的培训进行进一步提高高效性的性能。我们在两个大型LIDAR数据集中建议模型基准:NUSCENES,我们还提供了地面真相注释和Semantickitti。值得注意的是,高效地将在两个数据集上设置新的最先进状态。
translated by 谷歌翻译
Domain adaptation for Cross-LiDAR 3D detection is challenging due to the large gap on the raw data representation with disparate point densities and point arrangements. By exploring domain-invariant 3D geometric characteristics and motion patterns, we present an unsupervised domain adaptation method that overcomes above difficulties. First, we propose the Spatial Geometry Alignment module to extract similar 3D shape geometric features of the same object class to align two domains, while eliminating the effect of distinct point distributions. Second, we present Temporal Motion Alignment module to utilize motion features in sequential frames of data to match two domains. Prototypes generated from two modules are incorporated into the pseudo-label reweighting procedure and contribute to our effective self-training framework for the target domain. Extensive experiments show that our method achieves state-of-the-art performance on cross-device datasets, especially for the datasets with large gaps captured by mechanical scanning LiDARs and solid-state LiDARs in various scenes. Project homepage is at https://github.com/4DVLab/CL3D.git
translated by 谷歌翻译
LIDAR语义分割提供有关环境的3D语义信息,在其决策过程中为智能系统提供基本提示。深度神经网络正在实现这项任务的大型公共基准的最先进结果。不幸的是,找到概括井或适应其他域的模型,其中数据分布不同,仍然是一个重大挑战。这项工作解决了LIDAR语义分段模型的无监督域适应问题。我们的方法将新颖的想法结合在最新的最先进的方法之上,并产生了新的最先进的结果。我们提出了简单但有效的策略,以通过对齐输入空间的数据分布来减少域移位。此外,我们提出了一种基于学习的方法,使目标域的语义类的分布对准到源域。呈现的消融研究表明,每个部分如何促成最终表现。我们的策略显示在三个不同的域上运行的比较以前的域适应方法。
translated by 谷歌翻译
适应不断发展的环境是所有自动驾驶系统不可避免地面临的安全挑战。但是,现有的图像和视频驾驶数据集未能捕获现实世界的可变性质。在本文中,我们介绍了最大的多任务合成数据集,用于自动驾驶,转移。它显示了云彩,雨水强度,一天中的时间以及车辆和行人密度的离散和连续变化。Shift采用全面的传感器套件和几个主流感知任务的注释,可以调查在域转移水平越来越高的感知系统性能下降,从而促进了持续适应策略的发展,以减轻此问题并评估模型的鲁棒性和一般性。我们的数据集和基准工具包可在www.vis.xyz/shift上公开获得。
translated by 谷歌翻译
语义分割在广泛的计算机视觉应用中起着基本作用,提供了全球对图像​​的理解的关键信息。然而,最先进的模型依赖于大量的注释样本,其比在诸如图像分类的任务中获得更昂贵的昂贵的样本。由于未标记的数据替代地获得更便宜,因此无监督的域适应达到了语义分割社区的广泛成功并不令人惊讶。本调查致力于总结这一令人难以置信的快速增长的领域的五年,这包含了语义细分本身的重要性,以及将分段模型适应新环境的关键需求。我们提出了最重要的语义分割方法;我们对语义分割的域适应技术提供了全面的调查;我们揭示了多域学习,域泛化,测试时间适应或无源域适应等较新的趋势;我们通过描述在语义细分研究中最广泛使用的数据集和基准测试来结束本调查。我们希望本调查将在学术界和工业中提供具有全面参考指导的研究人员,并有助于他们培养现场的新研究方向。
translated by 谷歌翻译
Segmentation of lidar data is a task that provides rich, point-wise information about the environment of robots or autonomous vehicles. Currently best performing neural networks for lidar segmentation are fine-tuned to specific datasets. Switching the lidar sensor without retraining on a big set of annotated data from the new sensor creates a domain shift, which causes the network performance to drop drastically. In this work we propose a new method for lidar domain adaption, in which we use annotated panoptic lidar datasets and recreate the recorded scenes in the structure of a different lidar sensor. We narrow the domain gap to the target data by recreating panoptic data from one domain in another and mixing the generated data with parts of (pseudo) labeled target domain data. Our method improves the nuScenes to SemanticKITTI unsupervised domain adaptation performance by 15.2 mean Intersection over Union points (mIoU) and by 48.3 mIoU in our semi-supervised approach. We demonstrate a similar improvement for the SemanticKITTI to nuScenes domain adaptation by 21.8 mIoU and 51.5 mIoU, respectively. We compare our method with two state of the art approaches for semantic lidar segmentation domain adaptation with a significant improvement for unsupervised and semi-supervised domain adaptation. Furthermore we successfully apply our proposed method to two entirely unlabeled datasets of two state of the art lidar sensors Velodyne Alpha Prime and InnovizTwo, and train well performing semantic segmentation networks for both.
translated by 谷歌翻译
无监督的域适应性(UDA)旨在减少训练和测试数据之间的域间隙,并在大多数情况下以离线方式进行。但是,在部署过程中可能会连续且不可预测地发生域的变化(例如,天气变化突然变化)。在这种情况下,深度神经网络见证了准确性的急剧下降,离线适应可能不足以对比。在本文中,我们解决了在线域适应(ONDA)进行语义细分。我们设计了一条可逐步或突然转移的域转移的管道,在多雨和有雾的情况下,我们对其进行了评估。我们的实验表明,我们的框架可以有效地适应部署期间的新域,而不受灾难性遗忘以前的域的影响。
translated by 谷歌翻译
语义分段网络通常在部署期间预先培训并且未更新。因此,如果训练数据的分布偏离机器人操作期间遇到的那个,则通常发生错误分类。我们建议通过将神经网络调整到机器人在部署期间的环境中来缓解此问题,而无需对外监督。利用互补数据表示,通过概率地累积在体积3D地图中的连续2D语义预测来生成监督信号。然后,我们在累积的语义地图的渲染上重新培训网络,有效地解决歧义并通过3D表示来执行多视图一致性。为了在进行网络适应时保留先前学习的知识,我们采用了基于体验重放的持续学习策略。通过广泛的实验评估,我们对Scannet DataSet和RGB-D传感器记录的内部数据显示了对现实世界室内场景的成功适应。与固定的预训练的神经网络相比,我们的方法平均增加了分割性能11.8%,同时有效地保留了从预训练前数据集的知识。
translated by 谷歌翻译
受益于从特定情况(源)收集的相当大的像素级注释,训练有素的语义分段模型表现得非常好,但由于大域移位而导致的新情况(目标)失败。为了缓解域间隙,先前的跨域语义分段方法始终在域对齐期间始终假设源数据和目标数据的共存。但是,在实际方案中访问源数据可能会引发隐私问题并违反知识产权。为了解决这个问题,我们专注于一个有趣和具有挑战性的跨域语义分割任务,其中仅向目标域提供训练源模型。具体地,我们提出了一种称为ATP的统一框架,其包括三种方案,即特征对准,双向教学和信息传播。首先,我们设计了课程熵最小化目标,以通过提供的源模型隐式对准目标功能与看不见的源特征。其次,除了vanilla自我训练中的正伪标签外,我们是第一个向该领域引入负伪标签的,并开发双向自我训练策略,以增强目标域中的表示学习。最后,采用信息传播方案来通过伪半监督学习进一步降低目标域内的域内差异。综合与跨城市驾驶数据集的广泛结果验证\ TextBF {ATP}产生最先进的性能,即使是需要访问源数据的方法。
translated by 谷歌翻译
对象点云的语义分析在很大程度上是由释放基准数据集的驱动的,包括合成的数据集,其实例是从对象CAD模型中采样的。但是,从合成数据中学习可能不会推广到实际情况,在这种情况下,点云通常不完整,不均匀分布和嘈杂。可以通过学习域适应算法来减轻模拟对真实性(SIM2REAL)域间隙的挑战。但是,我们认为通过更现实的渲染来产生合成点云是一种强大的选择,因为可以捕获系统的非均匀噪声模式。为此,我们提出了一个集成方案,该方案包括通过将斑点模式的投影渲染到CAD模型上,以及一种新颖的准平衡自我训练,通过散布驱动驱动的选择,通过将斑点模式投影到CAD模型上,并通过将斑点模式投影和一种新颖的准平衡自我训练来渲染立体声图像,该方案包括对象点云的物理现实综合。长尾巴的伪标记为样品。实验结果可以验证我们方法的有效性及其两个模块,用于对点云分类的无监督域适应,从而实现最新的性能。源代码和SpeckLenet合成数据集可在https://github.com/gorilla-lab-scut/qs3上找到。
translated by 谷歌翻译
本文提出FogAdapt,一种用于密集有雾场景的语义细分域的新方法。虽然已经针对显着的研究来减少语义分割中的域移位,但对具有恶劣天气条件的场景的适应仍然是一个开放的问题。由于天气状况,如雾,烟雾和雾度,加剧了域移位的场景的可见性,从而使得在这种情况下进行了无监督的适应性。我们提出了一种自熵和多尺度信息增强的自我监督域适应方法(FOGADAPT),以最大限度地减少有雾场景分割的域移位。由经验证据支持,雾密度的增加导致分割概率的高自熵性,我们引入了基于自熵的损耗功能来引导适应方法。此外,在不同的图像尺度上获得的推论由不确定性组合并加权,以生成目标域的尺度不变伪标签。这些规模不变的伪标签对可见性和比例变化具有鲁棒性。我们在真正的雾景场景中评估了真正的清晰天气场景模型,适应和综合非雾图像到真正的雾场景适应情景。我们的实验表明,FogAdapt在有雾图像的语义分割中的目前最先进的情况下显着优异。具体而言,通过考虑标准设置与最先进的(SOTA)方法相比,FogaDATK在Foggy苏黎世上获得3.8%,有雾的驾驶密集为6.0%,而在Miou的雾化驾驶的3.6%,在Miou,在MiOOP中改编为有雾的苏黎世。
translated by 谷歌翻译
尽管进行了多年的研究,但跨域的概括仍然是深层网络的语义分割的关键弱点。先前的研究取决于静态模型的假设,即训练过程完成后,模型参数在测试时间保持固定。在这项工作中,我们通过一种自适应方法来挑战这一前提,用于语义分割,将推理过程调整为每个输入样本。自我适应在两个级别上运行。首先,它采用了自我监督的损失,该损失将网络中卷积层的参数定制为输入图像。其次,在批准层中,自适应近似于整个测试数据的平均值和方差,这是不可用的。它通过在训练和从单个测试样本得出的参考分布之间进行插值来实现这一目标。为了凭经验分析我们的自适应推理策略,我们制定并遵循严格的评估协议,以解决先前工作的严重局限性。我们的广泛分析得出了一个令人惊讶的结论:使用标准训练程序,自我适应大大优于强大的基准,并在多域基准测试方面设定了新的最先进的准确性。我们的研究表明,自适应推断可以补充培训时间的既定模型正规化实践,以改善深度网络的概括到异域数据。
translated by 谷歌翻译