自动化的设计数据归档可以减少设计师从创造性和有效工作浪费的时间。尽管存在许多有关分类,检测和实例对CAR外部的数据集,但这些大数据集与设计实践无关,因为主要目的在于自动驾驶或车辆验证。因此,我们发布了由汽车设计师定义的汽车样式功能组成的GP22。该数据集包含来自37个品牌和十个汽车段的1480个汽车侧面配置图像。它还包含遵循汽车外部设计特征的分类学特征的设计功能的注释,该特征在汽车设计师眼中定义。我们使用Yolo V5作为数据集的设计特征检测模型训练了基线模型。提出的模型的地图得分为0.995,召回0.984。此外,在草图上探索模型性能以及渲染汽车侧轮廓的图像意味着数据集的可扩展性是为了设计目的。
translated by 谷歌翻译
The previous fine-grained datasets mainly focus on classification and are often captured in a controlled setup, with the camera focusing on the objects. We introduce the first Fine-Grained Vehicle Detection (FGVD) dataset in the wild, captured from a moving camera mounted on a car. It contains 5502 scene images with 210 unique fine-grained labels of multiple vehicle types organized in a three-level hierarchy. While previous classification datasets also include makes for different kinds of cars, the FGVD dataset introduces new class labels for categorizing two-wheelers, autorickshaws, and trucks. The FGVD dataset is challenging as it has vehicles in complex traffic scenarios with intra-class and inter-class variations in types, scale, pose, occlusion, and lighting conditions. The current object detectors like yolov5 and faster RCNN perform poorly on our dataset due to a lack of hierarchical modeling. Along with providing baseline results for existing object detectors on FGVD Dataset, we also present the results of a combination of an existing detector and the recent Hierarchical Residual Network (HRN) classifier for the FGVD task. Finally, we show that FGVD vehicle images are the most challenging to classify among the fine-grained datasets.
translated by 谷歌翻译
自动交通事故检测已吸引机器视觉社区,因为它对自动智能运输系统(ITS)的发展产生了影响和对交通安全的重要性。然而,大多数关于有效分析和交通事故预测的研究都使用了覆盖范围有限的小规模数据集,从而限制了其效果和适用性。交通事故中现有的数据集是小规模,不是来自监视摄像机,而不是开源的,或者不是为高速公路场景建造的。由于在高速公路上发生事故,因此往往会造成严重损坏,并且太快了,无法赶上现场。针对从监视摄像机收集的高速公路交通事故的开源数据集非常需要和实际上。为了帮助视觉社区解决这些缺点,我们努力收集涵盖丰富场景的真实交通事故的视频数据。在通过各个维度进行集成和注释后,在这项工作中提出了一个名为TAD的大规模交通事故数据集。在这项工作中,使用公共主流视觉算法或框架进行了有关图像分类,对象检测和视频分类任务的各种实验,以证明不同方法的性能。拟议的数据集以及实验结果将作为改善计算机视觉研究的新基准提出,尤其是在其中。
translated by 谷歌翻译
自治机器人目前是最受欢迎的人工智能问题之一,在过去十年中,从自动驾驶汽车和人形系统到交付机器人和无人机,这是一项最受欢迎的智能问题。部分问题是获得一个机器人,以模仿人类的感知,我们的视觉感,用诸如神经网络等数学模型用相机和大脑的眼睛替换眼睛。开发一个能够在没有人为干预的情况下驾驶汽车的AI和一个小型机器人在城市中递送包裹可能看起来像不同的问题,因此来自感知和视觉的观点来看,这两个问题都有几种相似之处。我们目前的主要解决方案通过使用计算机视觉技术,机器学习和各种算法来实现对环境感知的关注,使机器人理解环境或场景,移动,调整其轨迹并执行其任务(维护,探索,等。)无需人为干预。在这项工作中,我们从头开始开发一个小型自动车辆,能够仅使用视觉信息理解场景,通过工业环境导航,检测人员和障碍,或执行简单的维护任务。我们审查了基本问题的最先进问题,并证明了小规模采用的许多方法类似于来自特斯拉或Lyft等公司的真正自动驾驶汽车中使用的方法。最后,我们讨论了当前的机器人和自主驾驶状态以及我们在这一领域找到的技术和道德限制。
translated by 谷歌翻译
自主车辆的环境感知受其物理传感器范围和算法性能的限制,以及通过降低其对正在进行的交通状况的理解的闭塞。这不仅构成了对安全和限制驾驶速度的重大威胁,而且它也可能导致不方便的动作。智能基础设施系统可以帮助缓解这些问题。智能基础设施系统可以通过在当前交通情况的数字模型的形式提供关于其周围环境的额外详细信息,填补了车辆的感知中的差距并扩展了其视野。数字双胞胎。然而,这种系统的详细描述和工作原型表明其可行性稀缺。在本文中,我们提出了一种硬件和软件架构,可实现这样一个可靠的智能基础架构系统。我们在现实世界中实施了该系统,并展示了它能够创建一个准确的延伸高速公路延伸的数字双胞胎,从而提高了自主车辆超越其车载传感器的极限的感知。此外,我们通过使用空中图像和地球观测方法来评估数字双胞胎的准确性和可靠性,用于产生地面真理数据。
translated by 谷歌翻译
计算机图形技术的最新进展可以使汽车驾驶环境更现实。它们使自动驾驶汽车模拟器(例如DeepGTA-V和Carla(学习采取行动))能够生成大量的合成数据,这些数据可以补充现有的现实世界数据集中,以培训自动驾驶汽车感知。此外,由于自动驾驶汽车模拟器可以完全控制环境,因此它们可以产生危险的驾驶场景,而现实世界中数据集缺乏恶劣天气和事故情况。在本文中,我们将证明将从现实世界收集的数据与模拟世界中生成的数据相结合的有效性,以训练对象检测和本地化任务的感知系统。我们还将提出一个多层次的深度学习感知框架,旨在效仿人类的学习经验,其中在某个领域中学习了一系列从简单到更困难的任务。自动驾驶汽车感知器可以从易于驱动的方案中学习,以通过模拟软件定制的更具挑战性的方案。
translated by 谷歌翻译
尽管韩国的架构管理信息已经长时间提供了高质量的信息,但信息的效用水平并不高,因为它专注于行政信息。虽然这是这种情况,但具有更高分辨率的三维(3D)地图随着技术的发展而出现。然而,它不能比视觉传输更好地运行,因为它仅包括聚焦在建筑物外部的图像信息。如果可以从3D地图中提取或识别与建筑物外部相关的信息,则预计信息的效用将更有价值,因为国家架构管理信息可以扩展到包括关于建筑物的这些信息外部到BIM的水平(建筑信息建模)。本研究旨在展示和评估利用深度学习和数字图像处理的3D映射的3D映射的建筑物外观相关信息的基本方法。在从地图中提取和预处理图像之后,使用快速R-CNN(具有卷积神经元网络的区域)模型来识别信息。在从地图中提取和预处理图像后,使用更快的R-CNN模型来识别信息。结果,它在检测到建筑物的高度和窗户部分以及旨在提取建筑物的高程信息的实验中的优异性能方面表现出大约93%和91%的精度。尽管如此,预计将通过补充混合由实验者的误解引起的误报或噪声数据的概率来获得改进的结果,从而与窗户的不明确的界限。
translated by 谷歌翻译
自动化驾驶系统(广告)开辟了汽车行业的新领域,为未来的运输提供了更高的效率和舒适体验的新可能性。然而,在恶劣天气条件下的自主驾驶已经存在,使自动车辆(AVS)长时间保持自主车辆(AVS)或更高的自主权。本文评估了天气在分析和统计方式中为广告传感器带来的影响和挑战,并对恶劣天气条件进行了解决方案。彻底报道了关于对每种天气的感知增强的最先进技术。外部辅助解决方案如V2X技术,当前可用的数据集,模拟器和天气腔室的实验设施中的天气条件覆盖范围明显。通过指出各种主要天气问题,自主驾驶场目前正在面临,近年来审查硬件和计算机科学解决方案,这项调查概述了在不利的天气驾驶条件方面的障碍和方向的障碍和方向。
translated by 谷歌翻译
Datasets drive vision progress, yet existing driving datasets are impoverished in terms of visual content and supported tasks to study multitask learning for autonomous driving. Researchers are usually constrained to study a small set of problems on one dataset, while real-world computer vision applications require performing tasks of various complexities. We construct BDD100K 1 , the largest driving video dataset with 100K videos and 10 tasks to evaluate the exciting progress of image recognition algorithms on autonomous driving. The dataset possesses geographic, environmental, and weather diversity, which is useful for training models that are less likely to be surprised by new conditions. Based on this diverse dataset, we build a benchmark for heterogeneous multitask learning and study how to solve the tasks together. Our experiments show that special training strategies are needed for existing models to perform such heterogeneous tasks. BDD100K opens the door for future studies in this important venue.
translated by 谷歌翻译
The last decade witnessed increasingly rapid progress in self-driving vehicle technology, mainly backed up by advances in the area of deep learning and artificial intelligence. The objective of this paper is to survey the current state-of-the-art on deep learning technologies used in autonomous driving. We start by presenting AI-based self-driving architectures, convolutional and recurrent neural networks, as well as the deep reinforcement learning paradigm. These methodologies form a base for the surveyed driving scene perception, path planning, behavior arbitration and motion control algorithms. We investigate both the modular perception-planning-action pipeline, where each module is built using deep learning methods, as well as End2End systems, which directly map sensory information to steering commands. Additionally, we tackle current challenges encountered in designing AI architectures for autonomous driving, such as their safety, training data sources and computational hardware. The comparison presented in this survey helps to gain insight into the strengths and limitations of deep learning and AI approaches for autonomous driving and assist with design choices. 1
translated by 谷歌翻译
自驾驶车辆是交通的未来。凭借目前的进步,世界正在越来越靠近安全道路,几乎缺点且具有意外和消除人类错误的可能性。然而,仍有许多研究和开发能够达到稳健程度。一个重要方面是要了解一个完全包括所有细节的场景。作为场景中对象的某些特征(属性)(例如,例如,驱动程序行为)可能是正确的决策。然而,当前算法遭受具有如此丰富的属性的低质量数据集。因此,在本文中,我们为属性识别提供了一个新的数据集 - CityCapes属性识别(CAR)。新数据集通过添加每个图像中的对象属性的其他还有重要的注释层来扩展众所周知的DataSet CounsOce。目前,我们已经注释了超过32K的各类类别(车辆,行人等)。数据集具有结构化和量身定制的分类系统,其中每个类别都有自己的一组可能的属性。量身定制的分类学专注于为开发更好的自动驾驶算法而具有最具利益的属性,这些算法取决于准确的计算机视觉和现场理解。我们还为数据集创建了一个API,以简化汽车的使用。可以通过https://github.com/kareem-molwaly/car-api访问API。
translated by 谷歌翻译
为计算机视觉标记大型示例数据集的挑战继续限制图像存储库的可用性和范围。这项研究为自动数据收集,策展,标签和迭代培训提供了一种新的方法,对螺头卫星图像和对象检测的情况进行最少的人为干预。新的操作量表有效地扫描了整个城市(68平方英里)的网格搜索,并通过太空观测得出了汽车颜色的预测。经过部分训练的Yolov5模型是一种初始推理种子,以进一步输出迭代循环中更精致的模型预测。这里的软标签是指接受标签噪声作为潜在的有价值的增强,以减少过度拟合并增强对以前看不见的测试数据的广义预测。该方法利用了一个现实世界的实例,其中汽车的裁剪图像可以自动从像素值中自动接收白色或彩色信息,从而完成端到端管道,而不会过度依赖人类劳动。
translated by 谷歌翻译
汽车行业在过去几十年中见证了越来越多的发展程度;从制造手动操作车辆到具有高自动化水平的制造车辆。随着近期人工智能(AI)的发展,汽车公司现在雇用BlackBox AI模型来使车辆能够感知其环境,并使人类少或没有输入的驾驶决策。希望能够在商业规模上部署自治车辆(AV),通过社会接受AV成为至关重要的,并且可能在很大程度上取决于其透明度,可信度和遵守法规的程度。通过为AVS行为的解释提供对这些接受要求的遵守对这些验收要求的评估。因此,解释性被视为AVS的重要要求。 AV应该能够解释他们在他们运作的环境中的“见到”。在本文中,我们对可解释的自动驾驶的现有工作体系进行了全面的调查。首先,我们通过突出显示并强调透明度,问责制和信任的重要性来开放一个解释的动机;并审查与AVS相关的现有法规和标准。其次,我们识别并分类了参与发展,使用和监管的不同利益相关者,并引出了AV的解释要求。第三,我们对以前的工作进行了严格的审查,以解释不同的AV操作(即,感知,本地化,规划,控制和系统管理)。最后,我们确定了相关的挑战并提供建议,例如AV可解释性的概念框架。该调查旨在提供对AVS中解释性感兴趣的研究人员所需的基本知识。
translated by 谷歌翻译
在过去十年中,全球各地的犯罪活动飙升。据印度警察局介绍,车辆盗窃是最不解决的犯罪之一,近19%的录制案件涉及机动车盗窃。为了克服这些对手,我们提出了一个实时车辆监控系统,它使用CCTV视频饲料检测和跟踪可疑车辆。所提出的系统提取车辆的各种属性,例如制作,模型,颜色,牌照号码和牌照的类型。采用各种图像处理和深度学习算法来满足所提出的系统的目标。提取的特征可用作报告违法行为的证据。虽然系统使用更多参数,但它仍然能够以最小的延迟和精度丢失进行实时预测。
translated by 谷歌翻译
Figure 1: We introduce datasets for 3D tracking and motion forecasting with rich maps for autonomous driving. Our 3D tracking dataset contains sequences of LiDAR measurements, 360 • RGB video, front-facing stereo (middle-right), and 6-dof localization. All sequences are aligned with maps containing lane center lines (magenta), driveable region (orange), and ground height. Sequences are annotated with 3D cuboid tracks (green). A wider map view is shown in the bottom-right.
translated by 谷歌翻译
电子踏板车已成为全球主要城市的无处不在的车辆。电子摩托车的数量不断升级,增加了与路上其他汽车的互动。 E-Scooter Rider的正常行为对其他易受攻击的道路使用者不同。这种情况为车辆主动安全系统和自动化驾驶功能创造了新的挑战,这需要检测电子踏板车作为第一步。为了我们的最佳知识,没有现有的计算机视觉模型来检测这些电子踏板车骑手。本文介绍了一种基于愿景的基于视觉的系统,可以区分电子踏板车骑车者和常规行人以及自然场景中的电子踏板车骑手的基准数据集。我们提出了一个高效的管道,建立了两种现有的最先进的卷积神经网络(CNN),您只需看一次(Yolov3)和MobileNetv2。我们在我们的数据集中微调MobileNetv2并培训模型以对电子踏板车骑手和行人进行分类。我们在原始测试样品上获得大约0.75左右的召回,以将电子踏板车骑手与整个管道进行分类。此外,YOLOV3顶部培训的MobileNetv2的分类精度超过91%,具有精度,召回超过0.9。
translated by 谷歌翻译
电动汽车越来越普遍,具有电感折射板被认为是充电电动车辆的方便和有效的手段。然而,驾驶员通常较差,使车辆对准到必要的电感充电的必要精度时,使得两个充电板的自动对准是所需的。与车辆队列的电气化平行,利用环保相机系统的自动停车系统越来越受欢迎。在这项工作中,我们提出了一种基于环绕式摄像机架构的系统来检测,本地化,并自动将车辆与电感充电板对齐。费用板的视觉设计不标准化,并不一定事先已知。因此,依赖离线培训的系统将在某些情况下失败。因此,我们提出了一种在线学习方法,在手动将车辆用ChartionPad手动对准时,利用驾驶员的行动,并将其与语义分割和深度的弱监督相结合,以学习分类器以自动注释视频中的电荷工作以进行进一步培训。通过这种方式,当面对先前的未持代币支付板时,驾驶员只需手动对准车辆即可。由于电荷板在地上平坦,从远处检测到它并不容易。因此,我们建议使用Visual Slam管道来学习相对于ChiftPad的地标,以实现从更大范围的对齐。我们展示了自动化车辆上的工作系统,如视频HTTPS://youtu.BE/_CLCMKW4UYO所示。为了鼓励进一步研究,我们将分享在这项工作中使用的费用数据集。
translated by 谷歌翻译
行动检测和公共交通安全是安全社区和更好社会的关键方面。使用不同的监视摄像机监视智能城市中的交通流量可以在识别事故和提醒急救人员中发挥重要作用。计算机视觉任务中的动作识别(AR)的利用为视频监视,医学成像和数字信号处理中的高精度应用做出了贡献。本文提出了一项密集的审查,重点是智能城市的事故检测和自动运输系统中的行动识别。在本文中,我们专注于使用各种交通视频捕获来源的AR系统,例如交通交叉点上的静态监视摄像头,高速公路监控摄像头,无人机摄像头和仪表板。通过这篇综述,我们确定了AR中用于自动运输和事故检测的主要技术,分类法和算法。我们还检查了AR任务中使用的数据集,并识别数据集的数据集和功能的主要来源。本文提供了潜在的研究方向,以开发和整合为自动驾驶汽车和公共交通安全系统的事故检测系统,通过警告紧急人员和执法部门,如果道路事故发生道路事故,以最大程度地减少事故报告中的人为错误,并对受害者提供自发的反应。
translated by 谷歌翻译
公路障碍检测是一个重要的研究领域,属于智能运输基础设施系统的范围。基于视觉的方法的使用为此类系统提供了准确且具有成本效益的解决方案。在这篇研究论文中,我们提出了一种使用仪表板视频的自动驾驶自动驾驶汽车的威胁检测机制,以确保在其视觉范围内的道路上存在任何不必要的障碍物。此信息可以帮助车辆的计划安全。有四个主要组件,即Yolo来识别对象,高级车道检测算法,多回归模型,用于测量对象与摄像机的距离,测量安全速度的两秒钟规则和限制速度。此外,我们已经使用了车祸数据集(CCD)来计算模型的准确性。Yolo算法的精度约为93%。我们提出的威胁检测模型(TDM)的最终准确性为82.65%。
translated by 谷歌翻译
Multi-modal fusion is a basic task of autonomous driving system perception, which has attracted many scholars' interest in recent years. The current multi-modal fusion methods mainly focus on camera data and LiDAR data, but pay little attention to the kinematic information provided by the bottom sensors of the vehicle, such as acceleration, vehicle speed, angle of rotation. These information are not affected by complex external scenes, so it is more robust and reliable. In this paper, we introduce the existing application fields of vehicle bottom information and the research progress of related methods, as well as the multi-modal fusion methods based on bottom information. We also introduced the relevant information of the vehicle bottom information data set in detail to facilitate the research as soon as possible. In addition, new future ideas of multi-modal fusion technology for autonomous driving tasks are proposed to promote the further utilization of vehicle bottom information.
translated by 谷歌翻译