图形结构的开发是有效地学习节点表示的关键,该节点在图表中保留有用信息。图表的一个显着性属性是,节点的潜在分层分组存在于全局透视图中,其中每个节点根据其相邻节点组成的上下文向特定组表示其成员资格。大多数事先作用忽略此类潜在组和节点的成员资格到不同的组,在建模邻域结构时,更不用说层次结构。因此,它们缺乏对图表中不同环境下的节点的全面了解。在本文中,我们提出了一种用于嵌入图形嵌入的新型分层周度成员资格模型,其中基于其邻近的上下文动态发现每个节点的潜在成员资格。在聚合相邻状态以生成节点嵌入时,执行两个组级和单个级别的关注。我们介绍了结构约束,明确规范每个节点的推断成员资格,使得捕获明确定义的分层分组结构。所提出的模型在节点分类和链路预测任务中嵌入解决方案的一组最先进的图表,以及包括引文网络和社交网络的各种图表中的链路预测任务。定性评估随着推断的成员资格可视化学习节点嵌入式,这证明了成员资格层次结构的概念,并启用了图形中的可解释的嵌入学习。
translated by 谷歌翻译
图表表示学习是一种快速增长的领域,其中一个主要目标是在低维空间中产生有意义的图形表示。已经成功地应用了学习的嵌入式来执行各种预测任务,例如链路预测,节点分类,群集和可视化。图表社区的集体努力提供了数百种方法,但在所有评估指标下没有单一方法擅长,例如预测准确性,运行时间,可扩展性等。该调查旨在通过考虑算法来评估嵌入方法的所有主要类别的图表变体,参数选择,可伸缩性,硬件和软件平台,下游ML任务和多样化数据集。我们使用包含手动特征工程,矩阵分解,浅神经网络和深图卷积网络的分类法组织了图形嵌入技术。我们使用广泛使用的基准图表评估了节点分类,链路预测,群集和可视化任务的这些类别算法。我们在Pytorch几何和DGL库上设计了我们的实验,并在不同的多核CPU和GPU平台上运行实验。我们严格地审查了各种性能指标下嵌入方法的性能,并总结了结果。因此,本文可以作为比较指南,以帮助用户选择最适合其任务的方法。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have become increasingly important in recent years due to their state-of-the-art performance on many important downstream applications. Existing GNNs have mostly focused on learning a single node representation, despite that a node often exhibits polysemous behavior in different contexts. In this work, we develop a persona-based graph neural network framework called PersonaSAGE that learns multiple persona-based embeddings for each node in the graph. Such disentangled representations are more interpretable and useful than a single embedding. Furthermore, PersonaSAGE learns the appropriate set of persona embeddings for each node in the graph, and every node can have a different number of assigned persona embeddings. The framework is flexible enough and the general design helps in the wide applicability of the learned embeddings to suit the domain. We utilize publicly available benchmark datasets to evaluate our approach and against a variety of baselines. The experiments demonstrate the effectiveness of PersonaSAGE for a variety of important tasks including link prediction where we achieve an average gain of 15% while remaining competitive for node classification. Finally, we also demonstrate the utility of PersonaSAGE with a case study for personalized recommendation of different entity types in a data management platform.
translated by 谷歌翻译
Community detection is the task of discovering groups of nodes sharing similar patterns within a network. With recent advancements in deep learning, methods utilizing graph representation learning and deep clustering have shown great results in community detection. However, these methods often rely on the topology of networks (i) ignoring important features such as network heterogeneity, temporality, multimodality, and other possibly relevant features. Besides, (ii) the number of communities is not known a priori and is often left to model selection. In addition, (iii) in multimodal networks all nodes are assumed to be symmetrical in their features; while true for homogeneous networks, most of the real-world networks are heterogeneous where feature availability often varies. In this paper, we propose a novel framework (named MGTCOM) that overcomes the above challenges (i)--(iii). MGTCOM identifies communities through multimodal feature learning by leveraging a new sampling technique for unsupervised learning of temporal embeddings. Importantly, MGTCOM is an end-to-end framework optimizing network embeddings, communities, and the number of communities in tandem. In order to assess its performance, we carried out an extensive evaluation on a number of multimodal networks. We found out that our method is competitive against state-of-the-art and performs well in inductive inference.
translated by 谷歌翻译
双类型的异构图形应用于许多真实情景。然而,以前的异构图形学习研究通常忽略这种异构图中的双键入实体之间的复杂相互作用。为了解决这个问题,在本文中,我们提出了一种新的双重分层关注网络(DHAN),以了解与类内和级别的分层关注网络的双键入异构图中的综合节点表示。具体地,课堂上的注意力旨在从相同类型的邻居中学习节点表示,而级别的关注能够从其不同类型的邻居聚合节点表示。因此,双重关注操作使DHAN不仅能够充分地利用节点帧内邻近信息,而且可以在双键入的异构图中提供帧间相邻信息。关于针对最先进的各种任务的实验结果充分证实了DHAN在学习节点的学习节点综合陈述的能力
translated by 谷歌翻译
在异质图上的自我监督学习(尤其是对比度学习)方法可以有效地摆脱对监督数据的依赖。同时,大多数现有的表示学习方法将异质图嵌入到欧几里得或双曲线的单个几何空间中。这种单个几何视图通常不足以观察由于其丰富的语义和复杂结构而观察到异质图的完整图片。在这些观察结果下,本文提出了一种新型的自我监督学习方法,称为几何对比度学习(GCL),以更好地表示监督数据是不可用时的异质图。 GCL同时观察了从欧几里得和双曲线观点的异质图,旨在强烈合并建模丰富的语义和复杂结构的能力,这有望为下游任务带来更多好处。 GCL通过在局部局部和局部全球语义水平上对比表示两种几何视图之间的相互信息。在四个基准数据集上进行的广泛实验表明,在三个任务上,所提出的方法在包括节点分类,节点群集和相似性搜索在内的三个任务上都超过了强基础,包括无监督的方法和监督方法。
translated by 谷歌翻译
Machine learning on graphs is an important and ubiquitous task with applications ranging from drug design to friendship recommendation in social networks. The primary challenge in this domain is finding a way to represent, or encode, graph structure so that it can be easily exploited by machine learning models. Traditionally, machine learning approaches relied on user-defined heuristics to extract features encoding structural information about a graph (e.g., degree statistics or kernel functions). However, recent years have seen a surge in approaches that automatically learn to encode graph structure into low-dimensional embeddings, using techniques based on deep learning and nonlinear dimensionality reduction. Here we provide a conceptual review of key advancements in this area of representation learning on graphs, including matrix factorization-based methods, random-walk based algorithms, and graph neural networks. We review methods to embed individual nodes as well as approaches to embed entire (sub)graphs. In doing so, we develop a unified framework to describe these recent approaches, and we highlight a number of important applications and directions for future work.
translated by 谷歌翻译
Graph neural network, as a powerful graph representation technique based on deep learning, has shown superior performance and attracted considerable research interest. However, it has not been fully considered in graph neural network for heterogeneous graph which contains different types of nodes and links. The heterogeneity and rich semantic information bring great challenges for designing a graph neural network for heterogeneous graph. Recently, one of the most exciting advancements in deep learning is the attention mechanism, whose great potential has been well demonstrated in various areas. In this paper, we first propose a novel heterogeneous graph neural network based on the hierarchical attention, including node-level and semantic-level attentions. Specifically, the node-level attention aims to learn the importance between a node and its metapath based neighbors, while the semantic-level attention is able to learn the importance of different meta-paths. With the learned importance from both node-level and semantic-level attention, the importance of node and meta-path can be fully considered. Then the proposed model can generate node embedding by aggregating features from meta-path based neighbors in a hierarchical manner. Extensive experimental results on three real-world heterogeneous graphs not only show the superior performance of our proposed model over the state-of-the-arts, but also demonstrate its potentially good interpretability for graph analysis.
translated by 谷歌翻译
异质图卷积网络在解决异质网络数据的各种网络分析任务方面已广受欢迎,从链接预测到节点分类。但是,大多数现有作品都忽略了多型节点之间的多重网络的关系异质性,而在元路径中,元素嵌入中关系的重要性不同,这几乎无法捕获不同关系跨不同关系的异质结构信号。为了应对这一挑战,这项工作提出了用于异质网络嵌入的多重异质图卷积网络(MHGCN)。我们的MHGCN可以通过多层卷积聚合自动学习多重异质网络中不同长度的有用的异质元路径相互作用。此外,我们有效地将多相关结构信号和属性语义集成到学习的节点嵌入中,并具有无监督和精选的学习范式。在具有各种网络分析任务的五个现实世界数据集上进行的广泛实验表明,根据所有评估指标,MHGCN与最先进的嵌入基线的优势。
translated by 谷歌翻译
用于异质图嵌入的图形神经网络是通过探索异质图的异质性和语义来将节点投射到低维空间中。但是,一方面,大多数现有的异质图嵌入方法要么不足以对特定语义下的局部结构进行建模,要么在汇总信息时忽略异质性。另一方面,来自多种语义的表示形式未全面整合以获得多功能节点嵌入。为了解决该问题,我们通过引入多视图表示学习的概念,提出了一个具有多视图表示学习(名为MV-HETGNN)的异质图神经网络(称为MV-HETGNN)。所提出的模型由节点特征转换,特定于视图的自我图编码和自动多视图融合,以彻底学习复杂的结构和语义信息,以生成全面的节点表示。在三个现实世界的异质图数据集上进行的广泛实验表明,所提出的MV-HETGNN模型始终优于各种下游任务中所有最新的GNN基准,例如节点分类,节点群集和链接预测。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have attracted increasing attention in recent years and have achieved excellent performance in semi-supervised node classification tasks. The success of most GNNs relies on one fundamental assumption, i.e., the original graph structure data is available. However, recent studies have shown that GNNs are vulnerable to the complex underlying structure of the graph, making it necessary to learn comprehensive and robust graph structures for downstream tasks, rather than relying only on the raw graph structure. In light of this, we seek to learn optimal graph structures for downstream tasks and propose a novel framework for semi-supervised classification. Specifically, based on the structural context information of graph and node representations, we encode the complex interactions in semantics and generate semantic graphs to preserve the global structure. Moreover, we develop a novel multi-measure attention layer to optimize the similarity rather than prescribing it a priori, so that the similarity can be adaptively evaluated by integrating measures. These graphs are fused and optimized together with GNN towards semi-supervised classification objective. Extensive experiments and ablation studies on six real-world datasets clearly demonstrate the effectiveness of our proposed model and the contribution of each component.
translated by 谷歌翻译
Clustering is a fundamental problem in network analysis that finds closely connected groups of nodes and separates them from other nodes in the graph, while link prediction is to predict whether two nodes in a network are likely to have a link. The definition of both naturally determines that clustering must play a positive role in obtaining accurate link prediction tasks. Yet researchers have long ignored or used inappropriate ways to undermine this positive relationship. In this article, We construct a simple but efficient clustering-driven link prediction framework(ClusterLP), with the goal of directly exploiting the cluster structures to obtain connections between nodes as accurately as possible in both undirected graphs and directed graphs. Specifically, we propose that it is easier to establish links between nodes with similar representation vectors and cluster tendencies in undirected graphs, while nodes in a directed graphs can more easily point to nodes similar to their representation vectors and have greater influence in their own cluster. We customized the implementation of ClusterLP for undirected and directed graphs, respectively, and the experimental results using multiple real-world networks on the link prediction task showed that our models is highly competitive with existing baseline models. The code implementation of ClusterLP and baselines we use are available at https://github.com/ZINUX1998/ClusterLP.
translated by 谷歌翻译
图表上的表示学习(也称为图形嵌入)显示了其对一系列机器学习应用程序(例如分类,预测和建议)的重大影响。但是,现有的工作在很大程度上忽略了现代应用程序中图和边缘的属性(或属性)中包含的丰富信息,例如,属性图表示的节点和边缘。迄今为止,大多数现有的图形嵌入方法要么仅关注具有图形拓扑的普通图,要么仅考虑节点上的属性。我们提出了PGE,这是一个图形表示学习框架,该框架将节点和边缘属性都包含到图形嵌入过程中。 PGE使用节点聚类来分配偏差来区分节点的邻居,并利用多个数据驱动的矩阵来汇总基于偏置策略采样的邻居的属性信息。 PGE采用了流行的邻里聚合归纳模型。我们通过显示PGE如何实现更好的嵌入结果的详细分析,并验证PGE的性能,而不是最新的嵌入方法嵌入方法在基准应用程序上的嵌入方法,例如节点分类和对现实世界中的链接预测数据集。
translated by 谷歌翻译
给定实体及其在Web数据中的交互,可能在不同的时间发生,我们如何找到实体社区并跟踪其演变?在本文中,我们从图形群集的角度处理这项重要任务。最近,通过深层聚类方法,已经实现了各个领域的最新聚类性能。特别是,深图聚类(DGC)方法通过学习节点表示和群集分配在关节优化框架中成功扩展到图形结构的数据。尽管建模选择有所不同(例如,编码器架构),但现有的DGC方法主要基于自动编码器,并使用相同的群集目标和相对较小的适应性。同样,尽管许多现实世界图都是动态的,但以前的DGC方法仅被视为静态图。在这项工作中,我们开发了CGC,这是一个新颖的端到端图形聚类框架,其与现有方法的根本不同。 CGC在对比度图学习框架中学习节点嵌入和群集分配,在多级别方案中仔细选择了正面和负样本,以反映层次结构的社区结构和网络同质。此外,我们将CGC扩展到时间不断发展的数据,其中时间图以增量学习方式执行,并具有检测更改点的能力。对现实世界图的广泛评估表明,所提出的CGC始终优于现有方法。
translated by 谷歌翻译
网络表示学习(NRL)方法在过去几年中受到了重大关注,因此由于它们在几个图形分析问题中的成功,包括节点分类,链路预测和聚类。这种方法旨在以一种保留网络的结构信息的方式将网络的每个顶点映射到低维空间中。特别感兴趣的是基于随机行走的方法;这些方法将网络转换为节点序列的集合,旨在通过预测序列内每个节点的上下文来学习节点表示。在本文中,我们介绍了一种通用框架,以增强通过基于主题信息的随机行走方法获取的节点的嵌入。类似于自然语言处理中局部单词嵌入的概念,所提出的模型首先将每个节点分配给潜在社区,并有利于各种统计图模型和社区检测方法,然后了解增强的主题感知表示。我们在两个下游任务中评估我们的方法:节点分类和链路预测。实验结果表明,通过纳入节点和社区嵌入,我们能够以广泛的广泛的基线NRL模型表明。
translated by 谷歌翻译
时间图代表实体之间的动态关系,并发生在许多现实生活中的应用中,例如社交网络,电子商务,通信,道路网络,生物系统等。他们需要根据其生成建模和表示学习的研究超出与静态图有关的研究。在这项调查中,我们全面回顾了近期针对处理时间图提出的神经时间依赖图表的学习和生成建模方法。最后,我们确定了现有方法的弱点,并讨论了我们最近发表的论文提格的研究建议[24]。
translated by 谷歌翻译
链接预测是一项重要的任务,在各个域中具有广泛的应用程序。但是,大多数现有的链接预测方法都假定给定的图遵循同质的假设,并设计基于相似性的启发式方法或表示学习方法来预测链接。但是,许多现实世界图是异性图,同义假设不存在,这挑战了现有的链接预测方法。通常,在异性图中,有许多引起链接形成的潜在因素,并且两个链接的节点在一个或两个因素中往往相似,但在其他因素中可能是不同的,导致总体相似性较低。因此,一种方法是学习每个节点的分离表示形式,每个矢量捕获一个因子上的节点的潜在表示,这铺平了一种方法来模拟异性图中的链接形成,从而导致更好的节点表示学习和链接预测性能。但是,对此的工作非常有限。因此,在本文中,我们研究了一个新的问题,该问题是在异性图上进行链接预测的分离表示学习。我们提出了一种新颖的框架分解,可以通过建模链接形成并执行感知因素的消息来学习以促进链接预测来学习解开的表示形式。在13个现实世界数据集上进行的广泛实验证明了Disenlink对异性恋和血友病图的链接预测的有效性。我们的代码可从https://github.com/sjz5202/disenlink获得
translated by 谷歌翻译
在低维空间中节点的学习表示是一项至关重要的任务,在网络分析中具有许多有趣的应用,包括链接预测,节点分类和可视化。解决此问题的两种流行方法是矩阵分解和基于步行的随机模型。在本文中,我们旨在将两全其美的最好的人融合在一起,以学习节点表示。特别是,我们提出了一个加权矩阵分解模型,该模型编码有关网络节点的随机步行信息。这种新颖的表述的好处是,它使我们能够利用内核函数,而无需意识到确切的接近矩阵,从而增强现有矩阵分解方法的表达性,并减轻其计算复杂性。我们通过多个内核学习公式扩展了方法,该公式提供了学习内核作为以数据驱动方式的词典的线性组合的灵活性。我们在现实世界网络上执行经验评估,表明所提出的模型优于基线节点嵌入下游机器学习任务中的算法。
translated by 谷歌翻译
图表可以模拟实体之间的复杂交互,它在许多重要的应用程序中自然出现。这些应用程序通常可以投入到标准图形学习任务中,其中关键步骤是学习低维图表示。图形神经网络(GNN)目前是嵌入方法中最受欢迎的模型。然而,邻域聚合范例中的标准GNN患有区分\ EMPH {高阶}图形结构的有限辨别力,而不是\ EMPH {低位}结构。为了捕获高阶结构,研究人员求助于主题和开发的基于主题的GNN。然而,现有的基于主基的GNN仍然仍然遭受较少的辨别力的高阶结构。为了克服上述局限性,我们提出了一个新颖的框架,以更好地捕获高阶结构的新框架,铰接于我们所提出的主题冗余最小化操作员和注射主题组合的新颖框架。首先,MGNN生成一组节点表示W.R.T.每个主题。下一阶段是我们在图案中提出的冗余最小化,该主题在彼此相互比较并蒸馏出每个主题的特征。最后,MGNN通过组合来自不同图案的多个表示来执行节点表示的更新。特别地,为了增强鉴别的功率,MGNN利用重新注射功能来组合表示的函数w.r.t.不同的主题。我们进一步表明,我们的拟议体系结构增加了GNN的表现力,具有理论分析。我们展示了MGNN在节点分类和图形分类任务上的七个公共基准上表现出最先进的方法。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译