本文提出了一种估计条件平均治疗效果的新方法。它称为TNW-CATE(可训练的Nadaraya-Watson回归CATE),并且基于以下假设:控制数量相当大,而处理的数量很少。 TNW-CATE使用Nadaraya-Watson回归来预测对照组和治疗组的患者的结果。 TNW-CATE背后的主要思想是通过使用特定形式的重量分享神经网络来训练Nadaraya-Watson回归的内核。该网络在控件上进行了训练,并用一组具有共享参数的神经子网代替标准内核,使每个子网都实现了可训练的内核,但是整个网络都实现了Nadaraya-Watson估计器。网络记住特征向量如何位于特征空间中。当源和目标数据的域相似时,所提出的方法类似于传输学习,但任务不同。各种数值仿真实验说明了TNW-CATE,并将其与众所周知的T-Learner,S-Learner和X-Learner进行比较,以进行几种类型的对照和治疗结果函数。 https://github.com/stasychbr/tnw-cate提供了实施TNW-CATE的算法的代码。
translated by 谷歌翻译
提出了一种称为ABRF(基于关注的随机林)的新方法及其用于将注意机制应用于回归和分类的随机林(RF)的修改。拟议的ABRF模型背后的主要观点是以特定方式将注意力与可培训参数分配给决策树。权重取决于实例之间的距离,其落入树的相应叶子,以及落入同一叶子的情况。这种想法源于Nadaraya-Watson内核回归以RF的形式表示。提出了三种改进的一般方法。第一个基于应用Huber的污染模型,并通过解决二次或线性优化问题来计算注意力。第二个和第三种修改使用基于梯度的算法来计算可训练参数。各种回归和分类数据集的数值实验说明了所提出的方法。
translated by 谷歌翻译
提出了使用注意力和自我发项机制共同解决回归问题的新模型。这些模型可以被视为基于注意力的随机森林的扩展,其思想源于将Nadaraya-Watson内核回归和Huber污染模型的组合应用于随机森林。自我发作旨在捕获树木预测的依赖性,并消除随机森林中的噪声或异常预测。自我发场模块与注意力重量的注意模块共同训练。结果表明,注意力重量的训练过程减少到解决单个二次或线性优化问题。提出并比较了一般方法的三个修改。还考虑了对随机森林的特定多头自我注意。自我注意事项的头部是通过更改其调谐参数(包括内核参数和模型的污染参数)来获得的。使用各种数据集的数值实验说明了所提出的模型,并表明自我发挥的补充可改善许多数据集的模型性能。
translated by 谷歌翻译
提出了一个新的基于注意力的升压机(GBM)的模型,称为AgBoost(基于注意力的梯度提升),以解决回归问题。拟议的AGBOOST模型背后的主要思想是将带有可训练参数的注意力分配给GBM的迭代,条件是决策树是GBM中的基础学习者。注意力的重量是通过应用决策树的特性和使用Huber的污染模型来确定的,该模型在注意力的参数和注意力重量之间提供了有趣的线性依赖性。这种特殊性使我们能够通过线性约束解决标准二次优化问题来训练注意力权重。注意力重量还取决于折现因子作为调整参数,这决定了重量的影响随迭代次数减少的程度。对两种类型的基础学习者,原始决策树和具有各种回归数据集的极为随机树进行的数值实验说明了所提出的模型。
translated by 谷歌翻译
大型观察数据越来越多地提供健康,经济和社会科学等学科,研究人员对因果问题而不是预测感兴趣。在本文中,从旨在调查参与学校膳食计划对健康指标的实证研究,研究了使用非参数回归的方法估算异质治疗效果的问题。首先,我们介绍了与观察或非完全随机数据进行因果推断相关的设置和相关的问题,以及如何在统计学习工具的帮助下解决这些问题。然后,我们审查并制定现有最先进的框架的统一分类,允许通过非参数回归模型来估算单个治疗效果。在介绍模型选择问题的简要概述后,我们说明了一些关于三种不同模拟研究的方法的性能。我们通过展示一些关于学校膳食计划数据的实证分析的一些方法的使用来结束。
translated by 谷歌翻译
为目标疾病开发新药物是一项耗时且昂贵的任务,药物重新利用已成为药物开发领域的流行话题。随着许多健康索赔数据可用,已经对数据进行了许多研究。现实世界的数据嘈杂,稀疏,并且具有许多混杂因素。此外,许多研究表明,药物的作用在人群中是异质的。近年来已经出现了许多有关估计异构治疗效果(HTE)(HTE)的高级机器学习模型,并已应用于计量经济学和机器学习社区。这些研究将医学和药物开发视为主要应用领域,但是从HTE方法论到药物开发的转化研究有限。我们旨在将HTE方法介绍到医疗保健领域,并在通过基准实验进行医疗保健行政索赔数据进行基准实验时提供可行性考虑。另外,我们希望使用基准实验来展示如何将模型应用于医疗保健研究时如何解释和评估模型。通过将最近的HTE技术引入生物医学信息学社区的广泛读者,我们希望通过机器学习促进广泛采用因果推断。我们还希望提供HTE具有个性化药物有效性的可行性。
translated by 谷歌翻译
Many scientific and engineering challenges-ranging from personalized medicine to customized marketing recommendations-require an understanding of treatment effect heterogeneity. In this paper, we develop a non-parametric causal forest for estimating heterogeneous treatment effects that extends Breiman's widely used random forest algorithm. In the potential outcomes framework with unconfoundedness, we show that causal forests are pointwise consistent for the true treatment effect, and have an asymptotically Gaussian and centered sampling distribution. We also discuss a practical method for constructing asymptotic confidence intervals for the true treatment effect that are centered at the causal forest estimates. Our theoretical results rely on a generic Gaussian theory for a large family of random forest algorithms. To our knowledge, this is the first set of results that allows any type of random forest, including classification and regression forests, to be used for provably valid statistical inference. In experiments, we find causal forests to be substantially more powerful than classical methods based on nearest-neighbor matching, especially in the presence of irrelevant covariates.
translated by 谷歌翻译
因果推论在电子商务和精确医学等各个领域都有广泛的应用,其性能在很大程度上取决于对个体治疗效果(ITE)的准确估计。通常,通过在其各个样品空间中分别对处理和控制响应函数进行建模来预测ITE。但是,这种方法通常会在实践中遇到两个问题,即治疗偏见引起的治疗组和对照组之间的分布分布以及其人口规模的显着样本失衡。本文提出了深层的整个空间跨网络(DESCN),以从端到端的角度进行建模治疗效果。 DESCN通过多任务学习方式捕获了治疗倾向,反应和隐藏治疗效果的综合信息。我们的方法共同学习了整个样品空间中的治疗和反应功能,以避免治疗偏见,并采用中间伪治疗效应预测网络来减轻样品失衡。从电子商务凭证分销业务的合成数据集和大规模生产数据集进行了广泛的实验。结果表明,DESCN可以成功提高ITE估计的准确性并提高提升排名的性能。发布生产数据集和源代码的样本是为了促进社区的未来研究,据我们所知,这是首个大型公共偏见的因果推理数据集。
translated by 谷歌翻译
由于样本量有限,可以准确估计研究地点(例如医院)中的个性化治疗效果。此外,隐私考虑和缺乏资源阻止站点利用其他站点的主题级数据。我们提出了一种基于树的模型平均方法,以通过利用从其他潜在异质部位得出的模型来提高目标部位条件平均治疗效果(CATE)的估计精度,而无需共享主题级数据。据我们的最佳知识,没有建立的模型平均分布式数据的方法,重点是改善治疗效果的估计。具体而言,在分布式数据网络下,我们的框架提供了一个基于CATE估算器的基于可解释的树的合奏,该集合可以跨研究站点加入模型,同时通过站点分区积极地对数据源中的异质性进行建模。通过对氧疗法对医院存活率的因果影响的现实研究证明了这种方法的表现,并得到了全面的模拟结果的支持。
translated by 谷歌翻译
估计治疗的个性化影响是一个复杂但普遍存在的问题。为了解决这个问题,机器学习(ML)关于异质治疗效果估计的最新发展引起了许多复杂的,但不透明的工具:由于它们的灵活性,模块化和学习受限的表示的能力,尤其是神经网络,因此已成为中心对此文学。不幸的是,这种黑匣子的资产是有代价的:模型通常涉及无数的非平凡操作,因此很难理解他们所学到的知识。然而,理解这些模型可能至关重要 - 例如,在医学背景下,发现有关治疗效果的知识异质性可以在临床实践中为治疗处方提供信息。因此,在这项工作中,我们使用事后特征重要性方法来识别影响模型预测的功能。这使我们能够评估沿着先前工作中忽略的新重要维度的治疗效应估计量:我们构建了一个基准测试环境,以经验研究个性化治疗效果模型鉴定预测协变量的能力 - 确定治疗差异反应的协变量。然后,我们的基准测量环境使我们能够对不同类型的治疗效果模型的优势和劣势提供新的见解,因为我们调节了针对治疗效果估计的不同挑战 - 例如预后与预测信息的比率,潜在结果的可能非线性以及混杂的存在和类型。
translated by 谷歌翻译
有许多可用于选择优先考虑治疗的可用方法,包括基于治疗效果估计,风险评分和手工制作规则的遵循申请。我们将秩加权平均治疗效应(RATY)指标作为一种简单常见的指标系列,用于比较水平竞争范围的治疗优先级规则。对于如何获得优先级规则,率是不可知的,并且仅根据他们在识别受益于治疗中受益的单位的方式进行评估。我们定义了一系列速率估算器,并证明了一个中央限位定理,可以在各种随机和观测研究环境中实现渐近精确的推断。我们为使用自主置信区间的使用提供了理由,以及用于测试关于治疗效果中的异质性的假设的框架,与优先级规则相关。我们对速率的定义嵌套了许多现有度量,包括QINI系数,以及我们的分析直接产生了这些指标的推论方法。我们展示了我们从个性化医学和营销的示例中的方法。在医疗环境中,使用来自Sprint和Accor-BP随机对照试验的数据,我们发现没有明显的证据证明异质治疗效果。另一方面,在大量的营销审判中,我们在一些数字广告活动的治疗效果中发现了具有的强大证据,并证明了如何使用率如何比较优先考虑估计风险的目标规则与估计治疗效益优先考虑的目标规则。
translated by 谷歌翻译
观察数据中估算单个治疗效果(ITE)在许多领域,例如个性化医学等领域。但是,实际上,治疗分配通常被未观察到的变量混淆,因此引入了偏见。消除偏见的一种补救措施是使用仪器变量(IVS)。此类环境在医学中广泛存在(例如,将合规性用作二进制IV的试验)。在本文中,我们提出了一个新颖的,可靠的机器学习框架,称为MRIV,用于使用二进制IV估算ITES,从而产生无偏见的ITE估计器。与以前的二进制IV的工作不同,我们的框架通过伪结果回归直接估算了ITE。 (1)我们提供了一个理论分析,我们表明我们的框架产生了多重稳定的收敛速率:即使几个滋扰估计器的收敛缓慢,我们的ITE估计器也会达到快速收敛。 (2)我们进一步表明,我们的框架渐近地优于最先进的插件IV方法,以进行ITE估计。 (3)我们以理论结果为基础,并提出了一种使用二进制IVS的ITE估算的定制的,称为MRIV-NET的深度神经网络结构。在各种计算实验中,我们从经验上证明了我们的MRIV-NET实现最先进的性能。据我们所知,我们的MRIV是第一个机器学习框架,用于估算显示出倍增功能的二进制IV设置。
translated by 谷歌翻译
在许多学科中,异质治疗效果(HTE)的估计至关重要,从个性化医学到经济学等等。在随机试验和观察性研究中,随机森林已被证明是一种灵活而有力的HTE估计方法。尤其是Athey,Tibshirani和Wager(2019)引入的“因果森林”,以及包装GRF中的R实施。 Seibold,Zeileis和Hothorn(2018)引入了一种称为“基于模型的森林”的相关方法,该方法旨在随机试验,并同时捕获预后和预测变量的效果,并在R包装模型中进行模块化实现。 。在这里,我们提出了一种统一的观点,它超出了理论动机,并研究了哪些计算元素使因果森林如此成功,以及如何将它们与基于模型的森林的优势融合在一起。为此,我们表明,可以通过相同的参数和L2损耗下加性模型的模型假设来理解这两种方法。这种理论上的见解使我们能够实施“基于模型的因果林”的几种口味,并在计算机中剖析其不同元素。将原始的因果森林和基于模型的森林与基准研究中的新混合版本进行了比较,该研究探讨了随机试验和观察环境。在随机设置中,两种方法都执行了AKIN。如果在数据生成过程中存在混淆,我们发现与相应倾向的治疗指标的局部核心是良好性能的主要驱动力。结果的局部核心不太重要,并且可以通过相对于预后和预测效应的同时拆分选择来代替或增强。
translated by 谷歌翻译
提出了一种新的基于多关注的MIL问题(MIMIL)的方法,其考虑了袋子中的每个分析的贴片的邻近补丁或情况。在该方法中,关注模块之一考虑了相邻的补丁或实例,使用了几个注意力模块来获取各种特征表示的补丁,并且一个注意模块用于组合不同的特征表示,以提供每个补丁的准确分类(实例)和整袋。由于妈妈,实现了以小规模的嵌入形式的斑块和邻居的组合表示,用于简单分类。此外,实现了不同类型的贴片,并有效地处理了通过使用几种注意力模块的袋中贴片的不同特征表示。提出了一种简单的解释贴片分类预测的方法。各种数据集的数值实验说明了所提出的方法。
translated by 谷歌翻译
传统的因果推理方法利用观察性研究数据来估计潜在治疗的观察到的差异和未观察到的结果,称为条件平均治疗效果(CATE)。然而,凯特就对应于仅第一刻的比较,因此可能不足以反映治疗效果的全部情况。作为替代方案,估计全部潜在结果分布可以提供更多的见解。但是,估计治疗效果的现有方法潜在的结果分布通常对这些分布施加限制性或简单的假设。在这里,我们提出了合作因果网络(CCN),这是一种新颖的方法,它通过学习全部潜在结果分布而超出了CATE的估计。通过CCN框架估算结果分布不需要对基础数据生成过程的限制性假设。此外,CCN促进了每种可能处理的效用的估计,并允许通过效用函数进行特定的特定变异。 CCN不仅将结果估计扩展到传统的风险差异之外,而且还可以通过定义灵活的比较来实现更全面的决策过程。根据因果文献中通常做出的假设,我们表明CCN学习了渐近捕获真正潜在结果分布的分布。此外,我们提出了一种调整方法,该方法在经验上可以有效地减轻观察数据中治疗组之间的样本失衡。最后,我们评估了CCN在多个合成和半合成实验中的性能。我们证明,与现有的贝叶斯和深层生成方法相比,CCN学会了改进的分布估计值,以及对各种效用功能的改进决策。
translated by 谷歌翻译
我们提出了一种从一组输入输出对中学习的新算法。我们的算法专为输入变量和输出变量与输出变量之间的关系而呈现出跨预测器空间的异构行为的群体设计。该算法从生成子集开始,该子集集中在输入空间中的随机点。然后培训每个子集的本地预测器。然后,这些预测变量以一种新的方式组合以产生整体预测因子。由于其与堆叠回归的方法的相似,我们称之为“使用子集堆叠”或更少学习“。我们将测试性能与在多个数据集上的最先进的方法中进行比较。我们的比较表明,较少是一种竞争的监督学习方法。此外,我们观察到,在计算时间方面较少也有效,并且允许直接并行实现。
translated by 谷歌翻译
R包Doubleml实现了Chernozhukov等人的双重/辩护机器学习框架。 (2018)。它提供了基于机器学习方法的因果模型中估计参数的功能。双机器学习框架由三个关键成分组成:Neyman正交性,高质量的机器学习估计和样品拆分。可以通过MLR3生态系统中可用的各种最新机器学习方法来执行滋扰组件的估计。 Doubleml使得可以在各种因果模型中进行推断,包括部分线性和交互式回归模型及其扩展到仪器变量估计。 Doubleml的面向对象的实现为模型规范具有很高的灵活性,并使其易于扩展。本文是对双机器学习框架和R软件包DOUBLEML的介绍。在具有模拟和真实数据集的可再现代码示例中,我们演示了Doubleml用户如何基于机器学习方法执行有效的推断。
translated by 谷歌翻译
基于森林的方法最近在非参数治疗效应估计中获得了普及。在这一工作方面,我们引入了因果生存森林,可用于在可能右估计结果的生存和观察环境中估计异质治疗效果。我们的方法依赖于正交估计方程来在不满意的情况下对审查和选择效果进行鲁棒性调整。在我们的实验中,我们发现相对于许多基线的表现良好的方法。
translated by 谷歌翻译
选择学术论文的出版物场所是研究过程中的关键一步。但是,在许多情况下,决策仅基于研究人员的经验,这通常会导致次优结果。尽管存在用于学术论文的场地推荐系统,但他们推荐了预计将发表该论文的场所。在这项研究中,我们的目标是从不同的角度推荐出版场所。我们估计,如果在每个场所发表论文,并推荐该论文具有最大潜在影响的场地,则将收到的引用数量。但是,这项任务面临两个挑战。首先,仅在一个地点发表论文,因此,如果该论文发表在另一个地点,我们无法观察到该论文收到的引用数量。其次,论文和出版物场所的内容在统计上是不独立的。也就是说,选择出版物场所存在选择偏见。在本文中,我们将场地推荐问题作为治疗效果估计问题提出。我们使用偏见校正方法来估计有效选择出版物场地的潜在影响,并根据每个场所的论文的潜在影响推荐场地。我们使用计算机科学会议的纸质数据强调了我们方法的有效性。
translated by 谷歌翻译
因果推断能够估计治疗效果(即,治疗结果的因果效果),使各个领域的决策受益。本研究中的一个基本挑战是观察数据的治疗偏见。为了提高对因果推断的观察研究的有效性,基于代表的方法作为最先进的方法表明了治疗效果估计的卓越性能。基于大多数基于表示的方法假设所有观察到的协变量都是预处理的(即,不受治疗影响的影响),并学习这些观察到的协变量的平衡表示,以估算治疗效果。不幸的是,这种假设往往在实践中往往是太严格的要求,因为一些协调因子是通过对治疗的干预进行改变(即,后治疗)来改变。相比之下,从不变的协变量中学到的平衡表示因此偏置治疗效果估计。
translated by 谷歌翻译