实践和磨练技能构成了人类学习方式的基本组成部分,但很少专门培训人造代理人来执行它们。取而代之的是,它们通常是端到端训练的,希望有用的技能将被隐含地学习,以最大程度地提高某些外部奖励功能的折扣回报。在本文中,我们研究了如何将技能纳入具有较大州行动空间和稀疏奖励的复杂环境中的加固学习训练中。为此,我们创建了Skillhack,这是Nethack游戏的任务和相关技能的基准。我们评估了该基准测试的许多基准,以及我们自己的新型基于技能的方法层次启动(HKS),该方法的表现优于所有其他评估的方法。我们的实验表明,先验了解有用技能的学习可以显着改善代理在复杂问题上的表现。我们最终认为,利用预定义的技能为RL问题提供了有用的归纳偏见,尤其是那些具有较大国家行动空间和稀疏奖励的问题。
translated by 谷歌翻译
The ability to effectively reuse prior knowledge is a key requirement when building general and flexible Reinforcement Learning (RL) agents. Skill reuse is one of the most common approaches, but current methods have considerable limitations.For example, fine-tuning an existing policy frequently fails, as the policy can degrade rapidly early in training. In a similar vein, distillation of expert behavior can lead to poor results when given sub-optimal experts. We compare several common approaches for skill transfer on multiple domains including changes in task and system dynamics. We identify how existing methods can fail and introduce an alternative approach to mitigate these problems. Our approach learns to sequence existing temporally-extended skills for exploration but learns the final policy directly from the raw experience. This conceptual split enables rapid adaptation and thus efficient data collection but without constraining the final solution.It significantly outperforms many classical methods across a suite of evaluation tasks and we use a broad set of ablations to highlight the importance of differentc omponents of our method.
translated by 谷歌翻译
深度强化学习(RL)的进展是通过用于培训代理商的具有挑战性的基准的可用性来驱动。但是,社区广泛采用的基准未明确设计用于评估RL方法的特定功能。虽然存在用于评估RL的特定打开问题的环境(例如探索,转移学习,无监督环境设计,甚至语言辅助RL),但一旦研究超出证明,通常难以将这些更富有,更复杂的环境 - 概念结果。我们展示了一个强大的沙箱框架,用于易于设计新颖的RL环境。 Minihack是一个停止商店,用于RL实验,环境包括从小房间到复杂的,程序生成的世界。通过利用来自Nethack的全套实体和环境动态,MiniHack是最富有的基网上的视频游戏之一,允许设计快速方便的定制RL测试台。使用这种沙箱框架,可以轻松设计新颖的环境,可以使用人类可读的描述语言或简单的Python接口来设计。除了各种RL任务和基线外,Minihack还可以包装现有的RL基准,并提供无缝添加额外复杂性的方法。
translated by 谷歌翻译
增强学习(RL)研究领域非常活跃,并具有重要的新贡献;特别是考虑到深RL(DRL)的新兴领域。但是,仍然需要解决许多科学和技术挑战,其中我们可以提及抽象行动的能力或在稀疏回报环境中探索环境的难以通过内在动机(IM)来解决的。我们建议通过基于信息理论的新分类法调查这些研究工作:我们在计算上重新审视了惊喜,新颖性和技能学习的概念。这使我们能够确定方法的优势和缺点,并展示当前的研究前景。我们的分析表明,新颖性和惊喜可以帮助建立可转移技能的层次结构,从而进一步抽象环境并使勘探过程更加健壮。
translated by 谷歌翻译
使用强化学习解决复杂的问题必须将问题分解为可管理的任务,无论是明确或隐式的任务,并学习解决这些任务的政策。反过来,这些政策必须由采取高级决策的总体政策来控制。这需要培训算法在学习这些政策时考虑这种等级决策结构。但是,实践中的培训可能会导致泛化不良,要么在很少的时间步骤执行动作,要么将其全部转变为单个政策。在我们的工作中,我们介绍了一种替代方法来依次学习此类技能,而无需使用总体层次的政策。我们在环境的背景下提出了这种方法,在这种环境的背景下,学习代理目标的主要组成部分是尽可能长时间延长情节。我们将我们提出的方法称为顺序选择评论家。我们在我们开发的灵活的模拟3D导航环境中演示了我们在导航和基于目标任务的方法的实用性。我们还表明,我们的方法优于先前的方法,例如在我们的环境中,柔软的演员和软选择评论家,以及健身房自动驾驶汽车模拟器和Atari River RAID RAID环境。
translated by 谷歌翻译
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policybased methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep Q-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.
translated by 谷歌翻译
我们提出了一种层次结构的增强学习方法Hidio,可以以自我监督的方式学习任务不合时宜的选项,同时共同学习利用它们来解决稀疏的奖励任务。与当前倾向于制定目标的低水平任务或预定临时的低级政策不同的层次RL方法不同,Hidio鼓励下级选项学习与手头任务无关,几乎不需要假设或很少的知识任务结构。这些选项是通过基于选项子对象的固有熵最小化目标来学习的。博学的选择是多种多样的,任务不可能的。在稀疏的机器人操作和导航任务的实验中,Hidio比常规RL基准和两种最先进的层次RL方法,其样品效率更高。
translated by 谷歌翻译
Hierarchical Reinforcement Learning (HRL) algorithms have been demonstrated to perform well on high-dimensional decision making and robotic control tasks. However, because they solely optimize for rewards, the agent tends to search the same space redundantly. This problem reduces the speed of learning and achieved reward. In this work, we present an Off-Policy HRL algorithm that maximizes entropy for efficient exploration. The algorithm learns a temporally abstracted low-level policy and is able to explore broadly through the addition of entropy to the high-level. The novelty of this work is the theoretical motivation of adding entropy to the RL objective in the HRL setting. We empirically show that the entropy can be added to both levels if the Kullback-Leibler (KL) divergence between consecutive updates of the low-level policy is sufficiently small. We performed an ablative study to analyze the effects of entropy on hierarchy, in which adding entropy to high-level emerged as the most desirable configuration. Furthermore, a higher temperature in the low-level leads to Q-value overestimation and increases the stochasticity of the environment that the high-level operates on, making learning more challenging. Our method, SHIRO, surpasses state-of-the-art performance on a range of simulated robotic control benchmark tasks and requires minimal tuning.
translated by 谷歌翻译
尽管在许多具有挑战性的问题中取得了成功,但增强学习(RL)仍然面临样本效率低下,可以通过将先验知识引入代理人来缓解。但是,在加强学习方面的许多转移技术使教师是专家的局限性假设。在本文中,我们将增强学习中的行动作为推理框架 - 即,在每个状态下的行动分布,类似于教师政策,而不是贝叶斯的先验 - 恢复最先进的策略蒸馏技术。然后,我们提出了一类自适应方法,这些方法可以通过结合奖励成型和辅助正则化损失来鲁sumply动作先验。与先前的工作相反,我们开发了利用次优的动作先验的算法,这些算法可能仍然传授有价值的知识 - 我们称之为软动作先验。拟议的算法通过根据教师在每个州的有用性的估计来调整教师反馈的强度来适应。我们执行表格实验,这表明所提出的方法达到了最先进的性能,在从次优先的先验中学习时超过了它。最后,我们证明了自适应算法在连续动作中的鲁棒性深度RL问题,与现有的策略蒸馏方法相比,自适应算法显着提高了稳定性。
translated by 谷歌翻译
长期的Horizo​​n机器人学习任务稀疏的奖励对当前的强化学习算法构成了重大挑战。使人类能够学习挑战的控制任务的关键功能是,他们经常获得专家干预,使他们能够在掌握低级控制动作之前了解任务的高级结构。我们为利用专家干预来解决长马增强学习任务的框架。我们考虑\ emph {选项模板},这是编码可以使用强化学习训练的潜在选项的规格。我们将专家干预提出,因为允许代理商在学习实施之前执行选项模板。这使他们能够使用选项,然后才能为学习成本昂贵的资源学习。我们在三个具有挑战性的强化学习问题上评估了我们的方法,这表明它的表现要优于最先进的方法。训练有素的代理商和我们的代码视频可以在以下网址找到:https://sites.google.com/view/stickymittens
translated by 谷歌翻译
分层增强学习中的选项框架将整体目标分解为选项或更简单的任务和相关策略的组合,从而可以在动作领域进行抽象。理想情况下,可以在不同的高级目标中重复使用这些选择;确实,这种重复使用对于实现可以有效利用其先前经验的持续学习代理的愿景是必要的。先前的方法仅提出了将预科选项转移到新任务设置的有限形式。我们提出了一种新颖的选项索引方法,用于分层学习(OI-HRL),在该方法中,我们学习选项与环境中存在的项目之间的亲和力功能。这使我们能够通过将目标指导的学习仅限于与手头的任务相关的那些选项,在测试时间零弹性概括中有效地重用大量的经过预告片的选项库。我们开发了一个元训练循环,该循环通过结合有关检索期权与高级目标的相关性的反馈来了解一系列HRL问题的选项和环境的表示。我们在两个模拟设置中评估了OI -HRL -Craftworld和AI2THOR环境 - 并表明我们与Oracular Baseline达到了性能竞争,并且比基线的实质性取得了可观的增长,该基线具有可用于学习层次结构策略的整个选项库。
translated by 谷歌翻译
Skill-based reinforcement learning (RL) has emerged as a promising strategy to leverage prior knowledge for accelerated robot learning. Skills are typically extracted from expert demonstrations and are embedded into a latent space from which they can be sampled as actions by a high-level RL agent. However, this skill space is expansive, and not all skills are relevant for a given robot state, making exploration difficult. Furthermore, the downstream RL agent is limited to learning structurally similar tasks to those used to construct the skill space. We firstly propose accelerating exploration in the skill space using state-conditioned generative models to directly bias the high-level agent towards only sampling skills relevant to a given state based on prior experience. Next, we propose a low-level residual policy for fine-grained skill adaptation enabling downstream RL agents to adapt to unseen task variations. Finally, we validate our approach across four challenging manipulation tasks that differ from those used to build the skill space, demonstrating our ability to learn across task variations while significantly accelerating exploration, outperforming prior works. Code and videos are available on our project website: https://krishanrana.github.io/reskill.
translated by 谷歌翻译
任务 - 无人探索的常见方法学习塔杜拉 - RASA - 代理商假设隔离环境,没有先验的知识或经验。然而,在现实世界中,代理商在许多环境中学习,并且随着他们探索新的环境,始终伴随着事先经验。探索是一场终身的过程。在本文中,我们提出了对任务无关探索的制定和评估的范式变迁。在此设置中,代理首先学会在许多环境中探索,没有任何外在目标的任务不可行的方式。后来,代理商有效地传输了学习探索政策,以便在解决任务时更好地探索新环境。在这方面,我们评估了几种基线勘探战略,并提出了一种简单但有效的学习任务无关探索政策方法。我们的主要思想是,有两种勘探组成部分:(1)基于代理人的信仰,促进探索探索环境的经验主义部分; (2)以环境为中心的组件,鼓励探索固有的有趣物体。我们表明我们的配方是有效的,并提供多种训练测试环境对的最一致的探索。我们还介绍了评估任务无关勘探策略的基准和指标。源代码在https://github.com/sparisi/cbet/处获得。
translated by 谷歌翻译
有效的探索是深度强化学习的关键挑战。几种方法,例如行为先验,能够利用离线数据,以便在复杂任务上有效加速加强学习。但是,如果手动的任务与所证明的任务过度偏离,则此类方法的有效性是有限的。在我们的工作中,我们建议从离线数据中学习功能,这些功能由更加多样化的任务共享,例如动作与定向之间的相关性。因此,我们介绍了无国有先验,该先验直接在显示的轨迹中直接建模时间一致性,并且即使在对简单任务收集的数据进行培训时,也能够在复杂的任务中推动探索。此外,我们通过从政策和行动之前的概率混合物中动态采样动作,引入了一种新颖的集成方案,用于非政策强化学习中的动作研究。我们将我们的方法与强大的基线相提并论,并提供了经验证据,表明它可以在稀疏奖励环境下的长途持续控制任务中加速加强学习。
translated by 谷歌翻译
长期以来,能够接受和利用特定于人类的任务知识的增强学习(RL)代理人被认为是开发可扩展方法来解决长途问题的可能策略。尽管以前的作品已经研究了使用符号模型以及RL方法的可能性,但他们倾向于假设高级动作模型在低级别上是可执行的,并且流利者可以专门表征所有理想的MDP状态。但是,现实世界任务的符号模型通常是不完整的。为此,我们介绍了近似符号模型引导的增强学习,其中我们将正式化符号模型与基础MDP之间的关系,这将使我们能够表征符号模型的不完整性。我们将使用这些模型来提取将用于分解任务的高级地标。在低水平上,我们为地标确定的每个可能的任务次目标学习了一组不同的政策,然后将其缝合在一起。我们通过在三个不同的基准域进行测试来评估我们的系统,并显示即使是不完整的符号模型信息,我们的方法也能够发现任务结构并有效地指导RL代理到达目标。
translated by 谷歌翻译
我们提出了一种新型的参数化技能学习算法,旨在学习可转移的参数化技能并将其合成为新的动作空间,以支持长期任务中的有效学习。我们首先提出了新颖的学习目标 - 以轨迹为中心的多样性和平稳性 - 允许代理商能够重复使用的参数化技能。我们的代理商可以使用这些学习的技能来构建时间扩展的参数化行动马尔可夫决策过程,我们为此提出了一种层次的参与者 - 批判算法,旨在通过学习技能有效地学习高级控制政策。我们从经验上证明,所提出的算法使代理能够解决复杂的长途障碍源环境。
translated by 谷歌翻译
在实践中,只要可以设计教学代理以提供专家监督,仿制学习就是纯粹的加强学习。但是,我们表明,当教学代理商决定与学生无法访问的特权信息时,在模仿学习期间,此信息被边缘化,导致“模仿差距”,导致潜在,差距。先前的工作通过仿制学习的仿制学习来弥合这一差距。虽然经常成功,但逐步的进展失败,需要频繁切换勘探和记忆之间的频繁交换。为了更好地解决这些任务并减轻模仿缺口,我们提出“适应性不管”(顾问)。顾问在培训期间动态重量仿制和奖励的加固学习损失,在模仿和探索之间启用了在线切换。在Gridworlds中设置的一套充满挑战的任务,多代理粒子环境和高保真3D模拟器,我们展示了与顾问的在线交换,优于纯粹的模仿,纯粹的加固学习以及它们的顺序和并行组合。
translated by 谷歌翻译
Progress in continual reinforcement learning has been limited due to several barriers to entry: missing code, high compute requirements, and a lack of suitable benchmarks. In this work, we present CORA, a platform for Continual Reinforcement Learning Agents that provides benchmarks, baselines, and metrics in a single code package. The benchmarks we provide are designed to evaluate different aspects of the continual RL challenge, such as catastrophic forgetting, plasticity, ability to generalize, and sample-efficient learning. Three of the benchmarks utilize video game environments (Atari, Procgen, NetHack). The fourth benchmark, CHORES, consists of four different task sequences in a visually realistic home simulator, drawn from a diverse set of task and scene parameters. To compare continual RL methods on these benchmarks, we prepare three metrics in CORA: Continual Evaluation, Isolated Forgetting, and Zero-Shot Forward Transfer. Finally, CORA includes a set of performant, open-source baselines of existing algorithms for researchers to use and expand on. We release CORA and hope that the continual RL community can benefit from our contributions, to accelerate the development of new continual RL algorithms.
translated by 谷歌翻译
强化学习可以培训有效执行复杂任务的政策。然而,对于长地平线任务,这些方法的性能与地平线脱落,通常需要推理和构成较低级别的技能。等级强化学习旨在通过为行动抽象提供一组低级技能来实现这一点。通过抽象空间状态,层次结构也可以进一步提高这一点。我们对适当的状态抽象应取决于可用的较低级别策略的功能。我们提出了价值函数空间:通过使用与每个较低级别的技能对应的值函数来产生这种表示的简单方法。这些价值函数捕获场景的可取性,从而形成了紧凑型摘要任务相关信息的表示,并强大地忽略了分散的人。迷宫解决和机器人操纵任务的实证评估表明,我们的方法提高了长地平的性能,并且能够比替代的无模型和基于模型的方法能够更好的零拍泛化。
translated by 谷歌翻译
Learning goal-directed behavior in environments with sparse feedback is a major challenge for reinforcement learning algorithms. The primary difficulty arises due to insufficient exploration, resulting in an agent being unable to learn robust value functions. Intrinsically motivated agents can explore new behavior for its own sake rather than to directly solve problems. Such intrinsic behaviors could eventually help the agent solve tasks posed by the environment. We present hierarchical-DQN (h-DQN), a framework to integrate hierarchical value functions, operating at different temporal scales, with intrinsically motivated deep reinforcement learning. A top-level value function learns a policy over intrinsic goals, and a lower-level function learns a policy over atomic actions to satisfy the given goals. h-DQN allows for flexible goal specifications, such as functions over entities and relations. This provides an efficient space for exploration in complicated environments. We demonstrate the strength of our approach on two problems with very sparse, delayed feedback: (1) a complex discrete stochastic decision process, and (2) the classic ATARI game 'Montezuma's Revenge'.
translated by 谷歌翻译