在给定的学习任务中提供不向导会传达出一个关键的归纳偏见,如果正确指定,可以导致样本效率学习和良好的概括。但是,对于许多感兴趣的问题来说,理想的不变性通常是未知的,这既导致了工程知识,又试图为不变性学习提供框架。但是,不变性学习是昂贵的,并且对于流行的神经体系结构而言是密集的。我们介绍了摊销不变性学习的概念。在前期学习阶段,我们学习了跨越不变性的特征提取器的低维流形,该曲线跨越了不变性,可以使用超网络进行不同的转换。然后,对于任何感兴趣的问题,模型和不变性学习都可以通过拟合低维不变性描述符和输出头的速度快速有效。从经验上讲,该框架可以在不同的下游任务中识别适当的不向导,并与常规方法相比,导致可比或更好的测试性能。我们的Hyper Invariance框架在理论上也很吸引人,因为它可以实现概括性结合,从而在模型拟合和复杂性之间的权衡中提供了一个有趣的新工作点。
translated by 谷歌翻译
自我监督的学习是一个强大的范例,用于在未标记的图像上学习。基于实例匹配的大量有效的新方法依赖于数据增强来推动学习,这些方法达成了优化流行识别基准的增强方案的粗略协议。但是,有强有力的理由可疑计算机视觉中的不同任务需要对不同(IN)差异进行编码的功能,因此可能需要不同的增强策略。在本文中,我们衡量了对比方法学到的修正学知识,并确认他们确实学会了与使用的增强的不变性,进一步表明,这一不变性大大转移到与姿势和照明的相关真实变化的变化很大程度上转移。我们展示了学习的InorRARCES强烈影响下游任务性能,并确认不同的下游任务从极性相反(IN)差异中受益,导致使用标准增强策略时的性能损失。最后,我们证明,具有互补的修正条件的表现简单融合可确保对所考虑的所有不同下游任务进行广泛的可转换性。
translated by 谷歌翻译
This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive selfsupervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by Sim-CLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-ofthe-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100× fewer labels. 1
translated by 谷歌翻译
最近无监督的表示学习方法已经通过学习表示不变的数据增强,例如随机裁剪和彩色抖动等数据增强来生效。然而,如果依赖于数据增强的特征,例如,位置或色敏,则这种不变性可能对下游任务有害。这不是一个不监督学习的问题;我们发现即使在监督学习中也会发生这种情况,因为它还学会预测实例所有增强样本的相同标签。为避免此类失败并获得更广泛的表示,我们建议优化辅助自我监督损失,创建的AGESELF,了解两个随机增强样本之间的增强参数(例如,裁剪位置,颜色调整强度)的差异。我们的直觉是,Augelf鼓励在学习的陈述中保留增强信息,这可能有利于其可转让性。此外,Augself可以很容易地纳入最近的最先进的表示学习方法,其额外的培训成本可忽略不计。广泛的实验表明,我们的简单想法一直在各种转移学习情景中始终如一地提高了由监督和无监督方法所学到的表示的可转移性。代码可在https://github.com/hankook/augsfir。
translated by 谷歌翻译
适应数据分布的结构(例如对称性和转型Imarerces)是机器学习中的重要挑战。通过架构设计或通过增强数据集,可以内在学习过程中内置Inhormces。两者都需要先验的了解对称性的确切性质。缺乏这种知识,从业者求助于昂贵且耗时的调整。为了解决这个问题,我们提出了一种新的方法来学习增强变换的分布,以新的\ emph {转换风险最小化}(trm)框架。除了预测模型之外,我们还优化了从假说空间中选择的转换。作为算法框架,我们的TRM方法是(1)有效(共同学习增强和模型,以\ emph {单训练环}),(2)模块化(使用\ emph {任何训练算法),以及(3)一般(处理\ \ ich {离散和连续}增强)。理论上与标准风险最小化的TRM比较,并在其泛化误差上给出PAC-Bayes上限。我们建议通过块组成的新参数化优化富裕的增强空间,导致新的\ EMPH {随机成分增强学习}(SCALE)算法。我们在CIFAR10 / 100,SVHN上使用先前的方法(快速自身自动化和武术器)进行实际比较规模。此外,我们表明规模可以在数据分布中正确地学习某些对称性(恢复旋转Mnist上的旋转),并且还可以改善学习模型的校准。
translated by 谷歌翻译
我们提出了一个统一的查看,即通过通用表示,一个深层神经网络共同学习多个视觉任务和视觉域。同时学习多个问题涉及最大程度地减少具有不同幅度和特征的多个损失函数的加权总和,从而导致一个损失的不平衡状态,与学习每个问题的单独模型相比,一个损失的不平衡状态主导了优化和差的结果。为此,我们提出了通过小容量适配器将多个任务/特定于域网络的知识提炼到单个深神经网络中的知识。我们严格地表明,通用表示在学习NYU-V2和CityScapes中多个密集的预测问题方面实现了最新的表现,来自视觉Decathlon数据集中的不同域中的多个图像分类问题以及MetadataSet中的跨域中的几个域中学习。最后,我们还通过消融和定性研究进行多次分析。
translated by 谷歌翻译
对图像分类任务的对比学习成功的鼓励,我们为3D手姿势估计的结构化回归任务提出了一种新的自我监督方法。对比学习利用未标记的数据来通过损失制定来使用未标记的数据,以鼓励学习的特征表示在任何图像转换下都是不变的。对于3D手姿势估计,它也希望具有不变性地与诸如颜色抖动的外观变换。但是,该任务需要在仿射和转换之类的转换下的标准性。为了解决这个问题,我们提出了一种对比的对比目标,并在3D手姿势估计的背景下展示其有效性。我们通过实验研究了不变性和对比的对比目标的影响,并表明学习的等待特征导致3D手姿势估计的任务的更好表示。此外,我们显示具有足够深度的标准Evenet,在额外的未标记数据上培训,在弗雷手中获得高达14.5%的提高,因此在没有任何任务的专用架构的情况下实现最先进的性能。 https://ait.ethz.ch/projects/2021/peclr/使用代码和模型
translated by 谷歌翻译
机器学习的最新进展表明,通过自我监督的学习获得的预训练表示形式可以通过小型培训数据实现高精度。与视觉和自然语言处理域不同,基于IMU的应用程序的预培训是具有挑战性的,因为只有少数公开可用的数据集具有足够的规模和多样性来学习可推广的表示。为了克服这个问题,我们提出了IMG2IMU,这是一种新颖的方法,可以适应从大规模图像到不同弹药的IMU感应任务的预训练表示。我们将传感器数据转换为可解释的频谱图,以便模型利用从视觉中获得的知识。此外,我们将对比度学习应用于我们旨在学习用于解释传感器数据的表示形式。我们对五个IMU感应任务的广泛评估表明,IMG2IMU始终优于基准,这说明视力知识可以纳入一些用于IMU感应任务的学习环境中。
translated by 谷歌翻译
在过去几年中,无监督的学习取得了很大的进展,特别是通过对比的自我监督学习。用于基准测试自我监督学习的主导数据集已经想象,最近的方法正在接近通过完全监督培训实现的性能。然而,ImageNet DataSet在很大程度上是以对象为中心的,并且目前尚不清楚这些方法的广泛不同的数据集和任务,这些方法是非以对象为中心的,例如数字病理学。虽然自我监督的学习已经开始在这个领域探讨了令人鼓舞的结果,但有理由看起来更接近这个环境与自然图像和想象成的不同。在本文中,我们对组织病理学进行了对比学学习的深入分析,引脚指向对比物镜的表现如何不同,由于组织病理学数据的特征。我们提出了一些考虑因素,例如对比目标和超参数调整的观点。在大量的实验中,我们分析了组织分类的下游性能如何受到这些考虑因素的影响。结果指出了对比学习如何减少数字病理中的注释工作,但需要考虑特定的数据集特征。为了充分利用对比学习目标,需要不同的视野和超参数校准。我们的结果为实现组织病理学应用的自我监督学习的全部潜力铺平了道路。
translated by 谷歌翻译
从积极和未标记的(PU)数据中学习是一种设置,学习者只能访问正面和未标记的样本,而没有关于负面示例的信息。这种PU环境在各种任务中非常重要,例如医学诊断,社交网络分析,金融市场分析和知识基础完成,这些任务也往往本质上是不平衡的,即大多数示例实际上是负面的。但是,大多数现有的PU学习方法仅考虑人工平衡的数据集,目前尚不清楚它们在不平衡和长尾数据分布的现实情况下的表现如何。本文提议通过强大而有效的自我监督预处理来应对这一挑战。但是,培训传统的自我监督学习方法使用高度不平衡的PU分布需要更好的重新重新制定。在本文中,我们提出\ textit {Impulses},这是\ usewanced {im}平衡\下划线{p} osive \ unesive \ usepline {u} nlabeLed \ underline {l}的统一表示的学习框架{p}。 \下划线{s}削弱了debiase预训练。 Impulses使用大规模无监督学习的通用组合以及对比度损失和额外重新持续的PU损失的一般组合。我们在多个数据集上进行了不同的实验,以表明Impuls能够使先前最新的错误率减半,即使与先前给出的真实先验的方法相比。此外,即使在无关的数据集上进行了预处理,我们的方法也表现出对事先错误指定和卓越性能的鲁棒性。我们预计,这种稳健性和效率将使从业者更容易在其他感兴趣的PU数据集上获得出色的结果。源代码可在\ url {https://github.com/jschweisthal/impulses}中获得
translated by 谷歌翻译
Arguably one of the top success stories of deep learning is transfer learning. The finding that pre-training a network on a rich source set (e.g., ImageNet) can help boost performance once fine-tuned on a usually much smaller target set, has been instrumental to many applications in language and vision. Yet, very little is known about its usefulness in 3D point cloud understanding. We see this as an opportunity considering the effort required for annotating data in 3D. In this work, we aim at facilitating research on 3D representation learning. Different from previous works, we focus on high-level scene understanding tasks. To this end, we select a suite of diverse datasets and tasks to measure the effect of unsupervised pre-training on a large source set of 3D scenes. Our findings are extremely encouraging: using a unified triplet of architecture, source dataset, and contrastive loss for pre-training, we achieve improvement over recent best results in segmentation and detection across 6 different benchmarks for indoor and outdoor, real and synthetic datasets -demonstrating that the learned representation can generalize across domains. Furthermore, the improvement was similar to supervised pre-training, suggesting that future efforts should favor scaling data collection over more detailed annotation. We hope these findings will encourage more research on unsupervised pretext task design for 3D deep learning. Our code is publicly available at https://github.com/facebookresearch/PointContrast
translated by 谷歌翻译
我们考虑无监督的域适应性(UDA),其中使用来自源域(例如照片)的标记数据,而来自目标域(例如草图)的未标记数据用于学习目标域的分类器。常规的UDA方法(例如,域对抗训练)学习域不变特征,以改善对目标域的概括。在本文中,我们表明,对比的预训练,它在未标记的源和目标数据上学习功能,然后在标记的源数据上进行微调,具有强大的UDA方法的竞争力。但是,我们发现对比前训练不会学习域不变特征,这与常规的UDA直觉不同。从理论上讲,我们证明了对比的预训练可以学习在跨域下微调但仍通过解开域和类信息来概括到目标域的特征。我们的结果表明,UDA不需要域的不变性。我们从经验上验证了基准视觉数据集的理论。
translated by 谷歌翻译
In continual learning (CL), the goal is to design models that can learn a sequence of tasks without catastrophic forgetting. While there is a rich set of techniques for CL, relatively little understanding exists on how representations built by previous tasks benefit new tasks that are added to the network. To address this, we study the problem of continual representation learning (CRL) where we learn an evolving representation as new tasks arrive. Focusing on zero-forgetting methods where tasks are embedded in subnetworks (e.g., PackNet), we first provide experiments demonstrating CRL can significantly boost sample efficiency when learning new tasks. To explain this, we establish theoretical guarantees for CRL by providing sample complexity and generalization error bounds for new tasks by formalizing the statistical benefits of previously-learned representations. Our analysis and experiments also highlight the importance of the order in which we learn the tasks. Specifically, we show that CL benefits if the initial tasks have large sample size and high "representation diversity". Diversity ensures that adding new tasks incurs small representation mismatch and can be learned with few samples while training only few additional nonzero weights. Finally, we ask whether one can ensure each task subnetwork to be efficient during inference time while retaining the benefits of representation learning. To this end, we propose an inference-efficient variation of PackNet called Efficient Sparse PackNet (ESPN) which employs joint channel & weight pruning. ESPN embeds tasks in channel-sparse subnets requiring up to 80% less FLOPs to compute while approximately retaining accuracy and is very competitive with a variety of baselines. In summary, this work takes a step towards data and compute-efficient CL with a representation learning perspective. GitHub page: https://github.com/ucr-optml/CtRL
translated by 谷歌翻译
What role do augmentations play in contrastive learning? Recent work suggests that good augmentations are label-preserving with respect to a specific downstream task. We complicate this picture by showing that label-destroying augmentations can be useful in the foundation model setting, where the goal is to learn diverse, general-purpose representations for multiple downstream tasks. We perform contrastive learning experiments on a range of image and audio datasets with multiple downstream tasks (e.g. for digits superimposed on photographs, predicting the class of one vs. the other). We find that Viewmaker Networks, a recently proposed model for learning augmentations for contrastive learning, produce label-destroying augmentations that stochastically destroy features needed for different downstream tasks. These augmentations are interpretable (e.g. altering shapes, digits, or letters added to images) and surprisingly often result in better performance compared to expert-designed augmentations, despite not preserving label information. To support our empirical results, we theoretically analyze a simple contrastive learning setting with a linear model. In this setting, label-destroying augmentations are crucial for preventing one set of features from suppressing the learning of features useful for another downstream task. Our results highlight the need for analyzing the interaction between multiple downstream tasks when trying to explain the success of foundation models.
translated by 谷歌翻译
设计对某些数据转换不变的学习系统对于机器学习至关重要。从业人员通常可以通过选择网络体系结构(例如使用卷积进行翻译或使用数据扩展。但是,在网络中实现真正的不变性可能很困难,并且并不总是知道数据不变。学习数据增强策略的最新方法需要持有数据,并且基于双重优化问题,这些问题很复杂,可以解决并且通常在计算上要求。在这项工作中,我们仅从培训数据中研究了学习不断增长的新方法。使用直接在网络中构建的可学习的增强层,我们证明我们的方法非常通用。它可以结合任何类型的可区分扩展,并应用于计算机视觉之外的广泛学习问题。我们提供的经验证据表明,基于二线优化的现代自动数据增强技术比现代自动数据增强技术更容易,更快,同时取得了可比的结果。实验表明,虽然通过自动数据增强传递到模型的不传导受到模型表达性的限制,但我们方法所产生的不变性对设计不敏感。
translated by 谷歌翻译
对比学习是机器学习中最快的研究领域之一,因为它可以在没有标记数据的情况下学习有用的表示。然而,对比学学习易于特征抑制,即,它可能会丢弃与感兴趣的任务相关的重要信息,并学习无关的功能。过去的工作通过消除无关信息的手工制作的数据增强解决了这一限制。然而,这种方法不适用于所有数据集和任务。此外,当一个属性可以抑制与其他属性相关的特征时,数据增强在解决多属性分类中的功能抑制中失败。在本文中,我们分析了对比学习的目标函数,并正式证明它易于特征抑制。然后,我们提出预测对比学习(PCL),一种学习对特征抑制具有鲁棒的无监督表示的框架。关键的想法是强制学习的表示来预测输入,因此防止它丢弃重要信息。广泛的实验验证PCL是否强大地对特征抑制和优于各种数据集和任务的最先进的对比学习方法。
translated by 谷歌翻译
Does the dominant approach to learn representations (as a side effect of optimizing an expected cost for a single training distribution) remain a good approach when we are dealing with multiple distributions. Our thesis is that such scenarios are better served by representations that are "richer" than those obtained with a single optimization episode. This is supported by a collection of empirical results obtained with an apparently na\"ive ensembling technique: concatenating the representations obtained with multiple training episodes using the same data, model, algorithm, and hyper-parameters, but different random seeds. These independently trained networks perform similarly. Yet, in a number of scenarios involving new distributions, the concatenated representation performs substantially better than an equivalently sized network trained from scratch. This proves that the representations constructed by multiple training episodes are in fact different. Although their concatenation carries little additional information about the training task under the training distribution, it becomes substantially more informative when tasks or distributions change. Meanwhile, a single training episode is unlikely to yield such a redundant representation because the optimization process has no reason to accumulate features that do not incrementally improve the training performance.
translated by 谷歌翻译
很少有射击分类旨在仅使用几个标签示例就可以很好地学习新对象类别。从其他模型转移功能表示是一种流行的方法,用于解决几乎没有射击的分类问题。在这项工作中,我们对各种功能表示形式进行了系统的研究,以进行几次射击分类,包括从MAML中学到的表示,监督分类和几个常见的自我监督任务。我们发现,从更复杂的任务中学习倾向于为几个射击分类提供更好的表示,因此我们建议使用从多个任务中学到的表示形式进行几次分类。加上功能选择和投票以处理小样本量的新技巧,我们的直接转移学习方法提供的性能可与几个基准数据集上的最先进相提并论。
translated by 谷歌翻译
Image classification with small datasets has been an active research area in the recent past. However, as research in this scope is still in its infancy, two key ingredients are missing for ensuring reliable and truthful progress: a systematic and extensive overview of the state of the art, and a common benchmark to allow for objective comparisons between published methods. This article addresses both issues. First, we systematically organize and connect past studies to consolidate a community that is currently fragmented and scattered. Second, we propose a common benchmark that allows for an objective comparison of approaches. It consists of five datasets spanning various domains (e.g., natural images, medical imagery, satellite data) and data types (RGB, grayscale, multispectral). We use this benchmark to re-evaluate the standard cross-entropy baseline and ten existing methods published between 2017 and 2021 at renowned venues. Surprisingly, we find that thorough hyper-parameter tuning on held-out validation data results in a highly competitive baseline and highlights a stunted growth of performance over the years. Indeed, only a single specialized method dating back to 2019 clearly wins our benchmark and outperforms the baseline classifier.
translated by 谷歌翻译
This work tackles the problem of semi-supervised learning of image classifiers. Our main insight is that the field of semi-supervised learning can benefit from the quickly advancing field of self-supervised visual representation learning. Unifying these two approaches, we propose the framework of self-supervised semi-supervised learning (S 4 L) and use it to derive two novel semi-supervised image classification methods. We demonstrate the effectiveness of these methods in comparison to both carefully tuned baselines, and existing semi-supervised learning methods. We then show that S 4 L and existing semi-supervised methods can be jointly trained, yielding a new state-of-the-art result on semi-supervised ILSVRC-2012 with 10% of labels.
translated by 谷歌翻译