具有窄光谱带的高光谱图像(HSI)可以捕获丰富的光谱信息,但它在该过程中牺牲其空间分辨率。最近提出了许多基于机器学习的HSI超分辨率(SR)算法。然而,这些方法的基本限制之一是它们高度依赖于图像和相机设置,并且只能学会用另一个特定设置用一个特定的设置映射输入的HSI。然而,由于HSI相机的多样性,不同的相机捕获具有不同光谱响应函数和频带编号的图像。因此,现有的基于机器学习的方法无法学习用于各种输入输出频带设置的超声波HSIS。我们提出了一种基于元学习的超分辨率(MLSR)模型,其可以在任意数量的输入频带'峰值波长下采用HSI图像,并产生具有任意数量的输出频带'峰值波长的SR HSIS。我们利用NTIRE2020和ICVL数据集训练并验证MLSR模型的性能。结果表明,单个提出的模型可以在任意输入 - 输出频带设置下成功生成超分辨的HSI频段。结果更好或至少与在特定输入输出频带设置上单独培训的基线相当。
translated by 谷歌翻译
随着深度学习技术的发展,基于卷积神经网络的多光谱图像超分辨率方法最近取得了很大的进展。然而,由于高光谱数据的高维和复谱特性,单个高光谱图像超分辨率仍然是一个具有挑战性的问题,这使得难以同时捕获空间和光谱信息。要处理此问题,我们提出了一种新的反馈精确的本地 - 全球网络(FRLGN),用于超光谱图像的超级分辨率。具体而言,我们开发新的反馈结构和本地全局频谱块,以减轻空间和光谱特征提取的难度。反馈结构可以传输高电平信息以指导低级特征的生成过程,其通过具有有限展开的经常性结构实现。此外,为了有效地使用所传回的高电平信息,构造局部全局频谱块以处理反馈连接。本地 - 全局频谱块利用反馈高级信​​息来校正来自局部光谱频带的低级功能,并在全局光谱频带之间产生强大的高级表示。通过结合反馈结构和局部全局光谱块,FRLGN可以充分利用光谱带之间的空间光谱相关性,并逐渐重建高分辨率高光谱图像。 FRLGN的源代码在https://github.com/tangzhenjie/frlgn上获得。
translated by 谷歌翻译
高光谱图像(HSI)没有额外辅助图像的超分辨率仍然是由于其高维光谱图案的恒定挑战,其中学习有效的空间和光谱表示是基本问题。最近,隐式的神经表示(INR)正在进行进步,作为新颖且有效的代表,特别是在重建任务中。因此,在这项工作中,我们提出了一种基于INR的新颖的HSI重建模型,其通过将空间坐标映射到其对应的光谱辐射值值的连续函数来表示HSI。特别地,作为INR的特定实现,参数模型的参数是通过使用卷积网络在特征提取的超通知来预测的。它使连续功能以内容感知方式将空间坐标映射到像素值。此外,周期性空间编码与重建过程深度集成,这使得我们的模型能够恢复更高的频率细节。为了验证我们模型的功效,我们在三个HSI数据集(洞穴,NUS和NTIRE2018)上进行实验。实验结果表明,与最先进的方法相比,该建议的模型可以实现竞争重建性能。此外,我们提供了对我们模型各个组件的效果的消融研究。我们希望本文可以服务器作为未来研究的效率参考。
translated by 谷歌翻译
图像超分辨率(SR)是重要的图像处理方法之一,可改善计算机视野领域的图像分辨率。在过去的二十年中,在超级分辨率领域取得了重大进展,尤其是通过使用深度学习方法。这项调查是为了在深度学习的角度进行详细的调查,对单像超分辨率的最新进展进行详细的调查,同时还将告知图像超分辨率的初始经典方法。该调查将图像SR方法分类为四个类别,即经典方法,基于学习的方法,无监督学习的方法和特定领域的SR方法。我们还介绍了SR的问题,以提供有关图像质量指标,可用参考数据集和SR挑战的直觉。使用参考数据集评估基于深度学习的方法。一些审查的最先进的图像SR方法包括增强的深SR网络(EDSR),周期循环gan(Cincgan),多尺度残留网络(MSRN),Meta残留密度网络(META-RDN) ,反复反射网络(RBPN),二阶注意网络(SAN),SR反馈网络(SRFBN)和基于小波的残留注意网络(WRAN)。最后,这项调查以研究人员将解决SR的未来方向和趋势和开放问题的未来方向和趋势。
translated by 谷歌翻译
为了解决高光谱图像超分辨率(HSISR)的不良问题,通常方法是使用高光谱图像(HSIS)的先前信息作为正则化术语来限制目标函数。使用手工制作前沿的基于模型的方法无法完全表征HSI的性质。基于学习的方法通常使用卷积神经网络(CNN)来学习HSI的隐式前导者。然而,CNN的学习能力是有限的,它仅考虑HSI的空间特性并忽略光谱特性,并且卷积对远程依赖性建模无效。还有很多改进的空间。在本文中,我们提出了一种新颖的HSISR方法,该方法使用变压器而不是CNN来学习HSI之前。具体地,我们首先使用近端梯度算法来解决HSISR模型,然后使用展开网络来模拟迭代解决方案过程。变压器的自我注意层使其具有空间全局互动的能力。此外,我们在变压器层后面添加3D-CNN,以更好地探索HSIS的时空相关性。两个广泛使用的HSI数据集和实际数据集的定量和视觉结果证明,与所有主流算法相比,所提出的方法实现了相当大的增益,包括最竞争力的传统方法和最近提出的基于深度学习的方法。
translated by 谷歌翻译
Informative features play a crucial role in the single image super-resolution task. Channel attention has been demonstrated to be effective for preserving information-rich features in each layer. However, channel attention treats each convolution layer as a separate process that misses the correlation among different layers. To address this problem, we propose a new holistic attention network (HAN), which consists of a layer attention module (LAM) and a channel-spatial attention module (CSAM), to model the holistic interdependencies among layers, channels, and positions. Specifically, the proposed LAM adaptively emphasizes hierarchical features by considering correlations among layers. Meanwhile, CSAM learns the confidence at all the positions of each channel to selectively capture more informative features. Extensive experiments demonstrate that the proposed HAN performs favorably against the state-ofthe-art single image super-resolution approaches.
translated by 谷歌翻译
单个图像超分辨率(SISR)是一个不良问题,旨在获得从低分辨率(LR)输入的高分辨率(HR)输出,在此期间应该添加额外的高频信息以改善感知质量。现有的SISR工作主要通过最小化平均平方重建误差来在空间域中运行。尽管高峰峰值信噪比(PSNR)结果,但难以确定模型是否正确地添加所需的高频细节。提出了一些基于基于残余的结构,以指导模型暗示高频率特征。然而,由于空间域度量的解释是有限的,如何验证这些人为细节的保真度仍然是一个问题。在本文中,我们提出了频率域视角来的直观管道,解决了这个问题。由现有频域的工作启发,我们将图像转换为离散余弦变换(DCT)块,然后改革它们以获取DCT功能映射,它用作我们模型的输入和目标。设计了专门的管道,我们进一步提出了符合频域任务的性质的频率损失功能。我们的SISR方法在频域中可以明确地学习高频信息,为SR图像提供保真度和良好的感知质量。我们进一步观察到我们的模型可以与其他空间超分辨率模型合并,以提高原始SR输出的质量。
translated by 谷歌翻译
随着深度学习(DL)的出现,超分辨率(SR)也已成为一个蓬勃发展的研究领域。然而,尽管结果有希望,但该领域仍然面临需要进一步研究的挑战,例如,允许灵活地采样,更有效的损失功能和更好的评估指标。我们根据最近的进步来回顾SR的域,并检查最新模型,例如扩散(DDPM)和基于变压器的SR模型。我们对SR中使用的当代策略进行了批判性讨论,并确定了有前途但未开发的研究方向。我们通过纳入该领域的最新发展,例如不确定性驱动的损失,小波网络,神经体系结构搜索,新颖的归一化方法和最新评估技术来补充先前的调查。我们还为整章中的模型和方法提供了几种可视化,以促进对该领域趋势的全球理解。最终,这篇综述旨在帮助研究人员推动DL应用于SR的界限。
translated by 谷歌翻译
Image super-resolution (SR) is a technique to recover lost high-frequency information in low-resolution (LR) images. Spatial-domain information has been widely exploited to implement image SR, so a new trend is to involve frequency-domain information in SR tasks. Besides, image SR is typically application-oriented and various computer vision tasks call for image arbitrary magnification. Therefore, in this paper, we study image features in the frequency domain to design a novel scale-arbitrary image SR network. First, we statistically analyze LR-HR image pairs of several datasets under different scale factors and find that the high-frequency spectra of different images under different scale factors suffer from different degrees of degradation, but the valid low-frequency spectra tend to be retained within a certain distribution range. Then, based on this finding, we devise an adaptive scale-aware feature division mechanism using deep reinforcement learning, which can accurately and adaptively divide the frequency spectrum into the low-frequency part to be retained and the high-frequency one to be recovered. Finally, we design a scale-aware feature recovery module to capture and fuse multi-level features for reconstructing the high-frequency spectrum at arbitrary scale factors. Extensive experiments on public datasets show the superiority of our method compared with state-of-the-art methods.
translated by 谷歌翻译
频谱重建的现有方法通常学习从RGB图像到多个频带的离散映射。然而,这种建模策略忽略了光谱签名的连续性。在本文中,我们提出了神经光谱重构(NESR)来提升这种限制,通过引入新的连续光谱表示来提升这种限制。为此,我们拥抱隐式功能的概念,并利用神经网络实现参数化实施例。具体来说,我们首先采用骨干网络来提取RGB输入的空间特征。基于它,我们设计了光谱简档插值(SPI)模块和神经注意映射(NAM)模块,以丰富深度特征,其中空间谱相关涉及更好的表示。然后,我们将采样光谱频带的数量视为连续隐式功能的坐标,以便从深度特征到频谱强度来学习投影。广泛的实验表明NESR在基线方法中重建精度的明显优势。此外,NESR通过使任意数量的频谱频带作为目标输出来扩展光谱重建的灵活性。
translated by 谷歌翻译
This paper explores the problem of reconstructing high-resolution light field (LF) images from hybrid lenses, including a high-resolution camera surrounded by multiple low-resolution cameras. The performance of existing methods is still limited, as they produce either blurry results on plain textured areas or distortions around depth discontinuous boundaries. To tackle this challenge, we propose a novel end-to-end learning-based approach, which can comprehensively utilize the specific characteristics of the input from two complementary and parallel perspectives. Specifically, one module regresses a spatially consistent intermediate estimation by learning a deep multidimensional and cross-domain feature representation, while the other module warps another intermediate estimation, which maintains the high-frequency textures, by propagating the information of the high-resolution view. We finally leverage the advantages of the two intermediate estimations adaptively via the learned attention maps, leading to the final high-resolution LF image with satisfactory results on both plain textured areas and depth discontinuous boundaries. Besides, to promote the effectiveness of our method trained with simulated hybrid data on real hybrid data captured by a hybrid LF imaging system, we carefully design the network architecture and the training strategy. Extensive experiments on both real and simulated hybrid data demonstrate the significant superiority of our approach over state-of-the-art ones. To the best of our knowledge, this is the first end-to-end deep learning method for LF reconstruction from a real hybrid input. We believe our framework could potentially decrease the cost of high-resolution LF data acquisition and benefit LF data storage and transmission.
translated by 谷歌翻译
The feed-forward architectures of recently proposed deep super-resolution networks learn representations of low-resolution inputs, and the non-linear mapping from those to high-resolution output. However, this approach does not fully address the mutual dependencies of low-and high-resolution images. We propose Deep Back-Projection Networks (DBPN), that exploit iterative up-and downsampling layers, providing an error feedback mechanism for projection errors at each stage. We construct mutuallyconnected up-and down-sampling stages each of which represents different types of image degradation and highresolution components. We show that extending this idea to allow concatenation of features across up-and downsampling stages (Dense DBPN) allows us to reconstruct further improve super-resolution, yielding superior results and in particular establishing new state of the art results for large scaling factors such as 8× across multiple data sets.
translated by 谷歌翻译
中心位置是否完全能够代表像素?在离散的图像表示中表示具有它们的中心的像素的错误,但是在图像超分辨率(SR)上下文中的局域脉中的信号的聚合时,它更有意义地考虑每个像素。尽管任意级图像SR领域的基于坐标的隐式表示的能力很大,但该区域的像素的性质不完全考虑。为此,我们提出了集成的位置编码(IPE),通过聚合在像素区域上聚合频率信息来扩展传统的位置编码。我们将IPE应用于最先进的任意级图像超分辨率方法:本地隐式图像功能(LIIF),呈现IPE-LIIF。我们通过定量和定性评估显示IPE-LIIF的有效性,并进一步证明了IPE泛化能力与更大的图像尺度和基于多种隐式的方法。代码将被释放。
translated by 谷歌翻译
卷积神经网络在过去十年中允许在单个图像超分辨率(SISR)中的显着进展。在SISR最近的进展中,关注机制对于高性能SR模型至关重要。但是,注意机制仍然不清楚为什么它在SISR中的工作原理。在这项工作中,我们试图量化和可视化SISR中的注意力机制,并表明并非所有关注模块都同样有益。然后,我们提出了关注网络(A $ ^ 2 $ n)的注意力,以获得更高效和准确的SISR。具体来说,$ ^ 2 $ n包括非关注分支和耦合注意力分支。提出了一种动态注意力模块,为这两个分支产生权重,以动态地抑制不需要的注意力调整,其中权重根据输入特征自适应地改变。这允许注意模块专门从事惩罚的有益实例,从而大大提高了注意力网络的能力,即几个参数开销。实验结果表明,我们的最终模型A $ ^ 2 $ n可以实现与类似尺寸的最先进网络相比的卓越的权衡性能。代码可以在https://github.com/haoyuc/a2n获得。
translated by 谷歌翻译
Recent research on super-resolution has progressed with the development of deep convolutional neural networks (DCNN). In particular, residual learning techniques exhibit improved performance. In this paper, we develop an enhanced deep super-resolution network (EDSR) with performance exceeding those of current state-of-the-art SR methods. The significant performance improvement of our model is due to optimization by removing unnecessary modules in conventional residual networks. The performance is further improved by expanding the model size while we stabilize the training procedure. We also propose a new multi-scale deep super-resolution system (MDSR) and training method, which can reconstruct high-resolution images of different upscaling factors in a single model. The proposed methods show superior performance over the state-of-the-art methods on benchmark datasets and prove its excellence by winning the NTIRE2017 Super-Resolution Challenge [26].
translated by 谷歌翻译
超级分辨率(SR)旨在增加图像的分辨率。应用程序包括安全性,医学成像和对象识别。我们提出了一种基于深度学习的SR系统,其将六角采样的低分辨率图像作为输入,并产生矩形采样的SR图像作为输出。为了进行培训和测试,我们使用一种现实观察模型,包括从衍射和传感器劣化的光学劣化,从检测器集成。我们的SR方法首先使用非均匀插值来部分地上置观察到的六边形图像并将其转换为矩形网格。然后,我们利用了设计用于SR的最先进的卷积神经网络(CNN)架构,该架构被称为残留通道注意网络(RCAN)。特别是,我们使用RCAN进一步上表并恢复图像以产生最终的SR图像估计。我们证明该系统优于将RCAN直接施加到具有等效样本密度的矩形采样的LR图像。六边形取样的理论优势是众所周知的。然而,据我们所知,六角形取样的实际好处,即RCAN SR等现代加工技术是迄今为止未经测试的。我们的SR系统演示了六角形样式在采用修改的RCAN进行六边形SR时的显着优势。
translated by 谷歌翻译
Convolutional neural networks have recently demonstrated high-quality reconstruction for single-image superresolution. In this paper, we propose the Laplacian Pyramid Super-Resolution Network (LapSRN) to progressively reconstruct the sub-band residuals of high-resolution images. At each pyramid level, our model takes coarse-resolution feature maps as input, predicts the high-frequency residuals, and uses transposed convolutions for upsampling to the finer level. Our method does not require the bicubic interpolation as the pre-processing step and thus dramatically reduces the computational complexity. We train the proposed LapSRN with deep supervision using a robust Charbonnier loss function and achieve high-quality reconstruction. Furthermore, our network generates multi-scale predictions in one feed-forward pass through the progressive reconstruction, thereby facilitates resource-aware applications. Extensive quantitative and qualitative evaluations on benchmark datasets show that the proposed algorithm performs favorably against the state-of-the-art methods in terms of speed and accuracy.
translated by 谷歌翻译
随着商业光场(LF)摄像机的可用性,LF成像已成为计算摄影中的启动技术。然而,由于空间和角度信息的固有多路复用,在基于商业微杆的LF相机中,空间分辨率受到了显着限制。因此,它成为光场摄像头其他应用的主要瓶颈。本文提出了一个预处理的单图像超级分辨率(SISR)网络中的适应模块,以利用强大的SISR模型,而不是使用高度工程的光场成像域特异性超级分辨率模型。自适应模块由子光圈移位块和融合块组成。它是SISR网络中的一种适应性,可以进一步利用LF图像中的空间和角度信息以提高超级分辨率性能。实验验证表明,所提出的方法的表现优于现有的光场超级分辨率算法。与量表因子2的相同审计的SISR模型相比,所有数据集中的PSNR增益也超过1 dB,而PSNR对于量表因子4的增长率为0.6至1 dB。
translated by 谷歌翻译
使用具有固定尺度的图像超分辨率(SR)的深度学习技术,已经取得了巨大的成功。为了提高其现实世界的适用性,还提出了许多模型来恢复具有任意尺度因子的SR图像,包括不对称的图像,其中图像沿水平和垂直方向大小为不同的尺度。尽管大多数模型仅针对单向上升尺度任务进行了优化,同时假设针对低分辨率(LR)输入的预定义的缩小内核,但基于可逆神经网络(INN)的最新模型能够通过优化降低和降低尺度和降低范围的降低准确性来显着提高上升的准确性共同。但是,受创新体系结构的限制,它被限制在固定的整数尺度因素上,并且需要每个量表的一个模型。在不增加模型复杂性的情况下,提出了一个简单有效的可逆重新恢复网络(IARN),以通过在这项工作中仅训练一个模型来实现任意图像重新缩放。使用创新的组件,例如位置感知量表编码和先发制通道拆分,该网络被优化,以将不可固化的重新恢复周期转换为有效的可逆过程。证明它可以在双向任意重新缩放中实现最新的(SOTA)性能,而不会在LR输出中损害感知质量。还可以证明,使用相同的网络体系结构在不对称尺度的测试上表现良好。
translated by 谷歌翻译
盲级超分辨率(SR)旨在从低分辨率(LR)图像中恢复高质量的视觉纹理,通常通过下采样模糊内核和添加剂噪声来降解。由于现实世界中复杂的图像降解的挑战,此任务非常困难。现有的SR方法要么假定预定义的模糊内核或固定噪声,这限制了这些方法在具有挑战性的情况下。在本文中,我们提出了一个用于盲目超级分辨率(DMSR)的降解引导的元修复网络,该网络促进了真实病例的图像恢复。 DMSR由降解提取器和元修复模块组成。萃取器估计LR输入中的降解,并指导元恢复模块以预测恢复参数的恢复参数。 DMSR通过新颖的降解一致性损失和重建损失共同优化。通过这样的优化,DMSR在三个广泛使用的基准上以很大的边距优于SOTA。一项包括16个受试者的用户研究进一步验证了现实世界中的盲目SR任务中DMSR的优势。
translated by 谷歌翻译