图像分类器对输入中的小扰动的敏感性通常被视为其结构的缺陷。我们表明这种敏感性是分类器的基本属性。对于AL的$ N $-$ N $ Images的任何任意分类器,我们向所有级别显示出来,可以在那个类中更改除了一个微小的修改中的那个类中的所有图像的分类与任何$ P $ -Norm测量时的图像空间的直径相比,包括汉明距离。然后,我们研究这种现象在人类视觉感知中的表现如何,并讨论其对计算机视觉系统设计考虑的影响。
translated by 谷歌翻译
Machine learning models are often susceptible to adversarial perturbations of their inputs. Even small perturbations can cause state-of-the-art classifiers with high "standard" accuracy to produce an incorrect prediction with high confidence. To better understand this phenomenon, we study adversarially robust learning from the viewpoint of generalization. We show that already in a simple natural data model, the sample complexity of robust learning can be significantly larger than that of "standard" learning. This gap is information theoretic and holds irrespective of the training algorithm or the model family. We complement our theoretical results with experiments on popular image classification datasets and show that a similar gap exists here as well. We postulate that the difficulty of training robust classifiers stems, at least partially, from this inherently larger sample complexity.
translated by 谷歌翻译
我们开发了一种高效的随机块模型中的弱恢复算法。该算法与随机块模型的Vanilla版本的最佳已知算法的统计保证匹配。从这个意义上讲,我们的结果表明,随机块模型没有稳健性。我们的工作受到最近的银行,Mohanty和Raghavendra(SODA 2021)的工作,为相应的区别问题提供了高效的算法。我们的算法及其分析显着脱离了以前的恢复。关键挑战是我们算法的特殊优化景观:种植的分区可能远非最佳意义,即完全不相关的解决方案可以实现相同的客观值。这种现象与PCA的BBP相转变的推出效应有关。据我们所知,我们的算法是第一个在非渐近设置中存在这种推出效果的鲁棒恢复。我们的算法是基于凸优化的框架的实例化(与平方和不同的不同),这对于其他鲁棒矩阵估计问题可能是有用的。我们的分析的副产物是一种通用技术,其提高了任意强大的弱恢复算法的成功(输入的随机性)从恒定(或缓慢消失)概率以指数高概率。
translated by 谷歌翻译
在随机子集总和问题中,给定$ n $ i.i.d.随机变量$ x_1,...,x_n $,我们希望将[-1,1] $ in [-1,1] $的任何点$ z \作为合适子集的总和$ x_ {i_1(z)},...,x_ {i_s(z)} $的$,最多$ \ varepsilon $。尽管有简单的陈述,但这个问题还是理论计算机科学和统计力学的基本兴趣。最近,它因其在人工神经网络理论中的影响而引起了人们的重新关注。该问题的一个明显的多维概括是考虑$ n $ i.i.d. \ $ d $ - 二维随机向量,目的是近似于[-1,1]^d $的每个点$ \ Mathbf {z} \。令人惊讶的是,在Lueker的1998年证明,在一维设置中,$ n = o(\ log \ frac 1 \ varepsilon)$ samples $ samples $ samples具有很高可能性的近似属性,在实现上述概括方面几乎没有进展。在这项工作中,我们证明,在$ d $ dimensions中,$ n = o(d^3 \ log \ frac 1 \ varepsilon \ cdot(\ log \ frac 1 \ frac 1 \ varepsilon + log d d))$ samples $ sample近似属性具有很高的概率。作为强调该结果潜在兴趣的应用程序,我们证明了最近提出的神经网络模型表现出\ emph {通用}:具有很高的概率,该模型可以在参数数量中近似多项式开销中的任何神经网络。
translated by 谷歌翻译
我们提出了改进的算法,并为身份测试$ n $维分布的问题提供了统计和计算下限。在身份测试问题中,我们将作为输入作为显式分发$ \ mu $,$ \ varepsilon> 0 $,并访问对隐藏分布$ \ pi $的采样甲骨文。目标是区分两个分布$ \ mu $和$ \ pi $是相同的还是至少$ \ varepsilon $ -far分开。当仅从隐藏分布$ \ pi $中访问完整样本时,众所周知,可能需要许多样本,因此以前的作品已经研究了身份测试,并额外访问了各种有条件采样牙齿。我们在这里考虑一个明显弱的条件采样甲骨文,称为坐标Oracle,并在此新模型中提供了身份测试问题的相当完整的计算和统计表征。我们证明,如果一个称为熵的分析属性为可见分布$ \ mu $保留,那么对于任何使用$ \ tilde {o}(n/\ tilde {o}),有一个有效的身份测试算法Varepsilon)$查询坐标Oracle。熵的近似张力是一种经典的工具,用于证明马尔可夫链的最佳混合时间边界用于高维分布,并且最近通过光谱独立性为许多分布族建立了最佳的混合时间。我们将算法结果与匹配的$ \ omega(n/\ varepsilon)$统计下键进行匹配的算法结果补充,以供坐标Oracle下的查询数量。我们还证明了一个计算相变:对于$ \ {+1,-1,-1 \}^n $以上的稀疏抗抗铁磁性模型,在熵失败的近似张力失败的状态下,除非RP = np,否则没有有效的身份测试算法。
translated by 谷歌翻译
我们考虑使用对抗鲁棒性学习的样本复杂性。对于此问题的大多数现有理论结果已经考虑了数据中不同类别在一起或重叠的设置。通过一些实际应用程序,我们认为,相比之下,存在具有完美精度和稳健性的分类器的分类器的良好分离的情况,并表明样品复杂性叙述了一个完全不同的故事。具体地,对于线性分类器,我们显示了大类分离的分布式,其中任何算法的预期鲁棒丢失至少是$ \ω(\ FRAC {D} {n})$,而最大边距算法已预期标准亏损$ o(\ frac {1} {n})$。这表明了通过现有技术不能获得的标准和鲁棒损耗中的间隙。另外,我们介绍了一种算法,给定鲁棒率半径远小于类之间的间隙的实例,给出了预期鲁棒损失的解决方案是$ O(\ FRAC {1} {n})$。这表明,对于非常好的数据,可实现$ O(\ FRAC {1} {n})$的收敛速度,否则就是这样。我们的结果适用于任何$ \ ell_p $ norm以$ p> 1 $(包括$ p = \ idty $)为稳健。
translated by 谷歌翻译
分析大型随机矩阵的浓度是多种领域的常见任务。给定独立的随机变量,许多工具可用于分析随机矩阵,其条目在变量中是线性的,例如基质 - 伯恩斯坦不平等。但是,在许多应用中,我们需要分析其条目是变量中多项式的随机矩阵。这些自然出现在光谱算法的分析中,例如霍普金斯等人。 [Stoc 2016],Moitra-Wein [Stoc 2019];并根据正方形层次结构的总和(例如Barak等。 [FOCS 2016],Jones等。 [焦点2021]。在这项工作中,我们基于Paulin-Mackey-Tropp(概率Annals of Poylibity of Poyliby of 2016],我们提出了一个通用框架来获得此类界限。 Efron-Stein不等式通过另一个简单(但仍然是随机)矩阵的范围来界定随机矩阵的规范,我们将其视为通过“区分”起始矩阵而引起的。通过递归区分,我们的框架减少了分析更简单的矩阵的主要任务。对于Rademacher变量,这些简单的矩阵实际上是确定性的,因此,分析它们要容易得多。对于一般的非拉多巴纳变量,任务减少到标量浓度,这要容易得多。此外,在多项式矩阵的设置中,我们的结果推广了Paulin-Mackey-Tropp的工作。使用我们的基本框架,我们在文献中恢复了简单的“张量网络”和“密集图矩阵”的已知界限。使用我们的一般框架,我们得出了“稀疏图矩阵”的边界,琼斯等人最近才获得。 [焦点2021]使用痕量功率方法的非平地应用,并且是其工作中的核心组成部分。我们希望我们的框架对涉及非线性随机矩阵浓度现象的其他应用有帮助。
translated by 谷歌翻译
我们建立了量子算法设计与电路下限之间的第一一般连接。具体来说,让$ \ mathfrak {c} $是一类多项式大小概念,假设$ \ mathfrak {c} $可以在统一分布下的成员查询,错误$ 1/2 - \ gamma $通过时间$ t $量子算法。我们证明如果$ \ gamma ^ 2 \ cdot t \ ll 2 ^ n / n $,则$ \ mathsf {bqe} \ nsubseteq \ mathfrak {c} $,其中$ \ mathsf {bqe} = \ mathsf {bque} [2 ^ {o(n)}] $是$ \ mathsf {bqp} $的指数时间模拟。在$ \ gamma $和$ t $中,此结果是最佳的,因为它不难学习(经典)时间$ t = 2 ^ n $(没有错误) ,或在Quantum Time $ t = \ mathsf {poly}(n)$以傅立叶采样为单位为1/2美元(2 ^ { - n / 2})$。换句话说,即使对这些通用学习算法的边际改善也会导致复杂性理论的主要后果。我们的证明在学习理论,伪随机性和计算复杂性的几个作品上构建,并且至关重要地,在非凡的经典学习算法与由Oliveira和Santhanam建立的电路下限之间的联系(CCC 2017)。扩展他们对量子学习算法的方法,结果产生了重大挑战。为此,我们展示了伪随机发电机如何以通用方式意味着学习到较低的连接,构建针对均匀量子计算的第一个条件伪随机发生器,并扩展了Impagliazzo,JaiSwal的本地列表解码算法。 ,Kabanets和Wigderson(Sicomp 2010)通过微妙的分析到量子电路。我们认为,这些贡献是独立的兴趣,可能会发现其他申请。
translated by 谷歌翻译
尽管使用对抗性训练捍卫深度学习模型免受对抗性扰动的经验成功,但到目前为止,仍然不清楚对抗性扰动的存在背后的原则是什么,而对抗性培训对神经网络进行了什么来消除它们。在本文中,我们提出了一个称为特征纯化的原则,在其中,我们表明存在对抗性示例的原因之一是在神经网络的训练过程中,在隐藏的重量中积累了某些小型密集混合物;更重要的是,对抗训练的目标之一是去除此类混合物以净化隐藏的重量。我们介绍了CIFAR-10数据集上的两个实验,以说明这一原理,并且一个理论上的结果证明,对于某些自然分类任务,使用随机初始初始化的梯度下降训练具有RELU激活的两层神经网络确实满足了这一原理。从技术上讲,我们给出了我们最大程度的了解,第一个结果证明,以下两个可以同时保持使用RELU激活的神经网络。 (1)对原始数据的训练确实对某些半径的小对抗扰动确实不舒适。 (2)即使使用经验性扰动算法(例如FGM),实际上也可以证明对对抗相同半径的任何扰动也可以证明具有强大的良好性。最后,我们还证明了复杂性的下限,表明该网络的低复杂性模型,例如线性分类器,低度多项式或什至是神经切线核,无论使用哪种算法,都无法防御相同半径的扰动训练他们。
translated by 谷歌翻译
我们研究了在存在$ \ epsilon $ - 对抗异常值的高维稀疏平均值估计的问题。先前的工作为此任务获得了该任务的样本和计算有效算法,用于辅助性Subgaussian分布。在这项工作中,我们开发了第一个有效的算法,用于强大的稀疏平均值估计,而没有对协方差的先验知识。对于$ \ Mathbb r^d $上的分布,带有“认证有限”的$ t $ tum-矩和足够轻的尾巴,我们的算法达到了$ o(\ epsilon^{1-1/t})$带有样品复杂性$的错误(\ epsilon^{1-1/t}) m =(k \ log(d))^{o(t)}/\ epsilon^{2-2/t} $。对于高斯分布的特殊情况,我们的算法达到了$ \ tilde o(\ epsilon)$的接近最佳错误,带有样品复杂性$ m = o(k^4 \ mathrm {polylog}(d)(d))/\ epsilon^^ 2 $。我们的算法遵循基于方形的总和,对算法方法的证明。我们通过统计查询和低度多项式测试的下限来补充上限,提供了证据,表明我们算法实现的样本时间 - 错误权衡在质量上是最好的。
translated by 谷歌翻译
训练神经网络的一种常见方法是将所有权重初始化为独立的高斯向量。我们观察到,通过将权重初始化为独立对,每对由两个相同的高斯向量组成,我们可以显着改善收敛分析。虽然已经研究了类似的技术来进行随机输入[Daniely,Neurips 2020],但尚未使用任意输入进行分析。使用此技术,我们展示了如何显着减少两层relu网络所需的神经元数量,均在逻辑损失的参数化设置不足的情况下,大约$ \ gamma^{ - 8} $ [Ji and telgarsky,ICLR, 2020]至$ \ gamma^{ - 2} $,其中$ \ gamma $表示带有神经切线内核的分离边距,以及在与平方损失的过度参数化设置中,从大约$ n^4 $ [song [song]和Yang,2019年]至$ n^2 $,隐含地改善了[Brand,Peng,Song和Weinstein,ITCS 2021]的近期运行时间。对于参数不足的设置,我们还证明了在先前工作时改善的新下限,并且在某些假设下是最好的。
translated by 谷歌翻译
高维统计数据的一个基本目标是检测或恢复嘈杂数据中隐藏的种植结构(例如低级别矩阵)。越来越多的工作研究低级多项式作为此类问题的计算模型的限制模型:在各种情况下,数据的低级多项式可以与最知名的多项式时间算法的统计性能相匹配。先前的工作已经研究了低度多项式的力量,以检测隐藏结构的存在。在这项工作中,我们将这些方法扩展到解决估计和恢复问题(而不是检测)。对于大量的“信号加噪声”问题,我们给出了一个用户友好的下限,以获得最佳的均衡误差。据我们所知,这些是建立相关检测问题的恢复问题低度硬度的第一个结果。作为应用,我们对种植的子静脉和种植的密集子图问题的低度最小平方误差进行了严格的特征,在两种情况下都解决了有关恢复的计算复杂性的开放问题(在低度框架中)。
translated by 谷歌翻译
本文讨论了ERD \ H {O} S-R \'enyi图的图形匹配或网络对齐问题,可以将其视为图同构问题的嘈杂平均案例版本。令$ g $和$ g'$ be $ g(n,p)$ erd \ h {o} s--r \'enyi略微图形,并用其邻接矩阵识别。假设$ g $和$ g'$是相关的,因此$ \ mathbb {e} [g_ {ij} g'_ {ij}] = p(1- \ alpha)$。对于置换$ \ pi $,代表$ g $和$ g'$之间的潜在匹配,用$ g^\ pi $表示从$ \ pi $的$ g $的顶点获得的图表。观察$ g^\ pi $和$ g'$,我们的目标是恢复匹配的$ \ pi $。在这项工作中,我们证明,在(0,1] $中,每$ \ varepsilon \ in(0,1] $,都有$ n_0> 0 $,具体取决于$ \ varepsilon $和绝对常数$ \ alpha_0,r> 0 $,带有以下属性。令$ n \ ge n_0 $,$(1+ \ varepsilon)\ log n \ le np \ le n^{\ frac {1} {r \ log \ log \ log n}} $ (\ alpha_0,\ varepsilon/4)$。有一个多项式时算法$ f $,因此$ \ m athbb {p} \ {f(g^\ pi,g')= \ pi \} = 1-o (1)$。这是第一种多项式时算法,它恢复了相关的ERD \ H {O} S-r \'enyi图与具有恒定相关性的相关性图与高概率相关性的确切匹配。该算法是基于比较的比较与图形顶点关联的分区树。
translated by 谷歌翻译
为了捕获许多社区检测问题的固有几何特征,我们建议使用一个新的社区随机图模型,我们称之为\ emph {几何块模型}。几何模型建立在\ emph {随机几何图}(Gilbert,1961)上,这是空间网络的随机图的基本模型之一,就像在ERD \ H上建立的良好的随机块模型一样{o} s-r \'{en} yi随机图。它也是受到社区发现中最新的理论和实际进步启发的随机社区模型的自然扩展。为了分析几何模型,我们首先为\ emph {Random Annulus图}提供新的连接结果,这是随机几何图的概括。自引入以来,已经研究了几何图的连通性特性,并且由于相关的边缘形成而很难分析它们。然后,我们使用随机环形图的连接结果来提供必要的条件,以有效地为几何块模型恢复社区。我们表明,一种简单的三角计数算法来检测几何模型中的社区几乎是最佳的。为此,我们考虑了两个图密度方案。在图表的平均程度随着顶点的对数增长的状态中,我们表明我们的算法在理论上和实际上都表现出色。相比之下,三角计数算法对于对数学度方案中随机块模型远非最佳。我们还查看了图表的平均度与顶点$ n $的数量线性增长的状态,因此要存储一个需要$ \ theta(n^2)$内存的图表。我们表明,我们的算法需要在此制度中仅存储$ o(n \ log n)$边缘以恢复潜在社区。
translated by 谷歌翻译
支持向量机(SVM)是一种完善的分类方法,其名称指的是称为支持向量的特定训练示例,该示例确定了分离超平面的最大边缘。与培训示例相比,当支持向量的数量少时,SVM分类器享有良好的概括属性。但是,最近的研究表明,在足够高维的线性分类问题中,尽管支持向量的扩散,但在所有训练示例都是支持向量的情况下,SVM仍可以很好地概括。在本文中,我们确定了这种支持矢量增殖现象的新的确定性等效性,并使用它们来(1)实质上扩大了该现象在高维环境中发生的条件,并且(2)证明了几乎匹配的逆向结果。
translated by 谷歌翻译
在这项工作中,我们研究了一个非负矩阵分解的变体,我们希望找到给定输入矩阵的对称分解成稀疏的布尔矩阵。正式说话,给定$ \ mathbf {m} \ in \ mathbb {z} ^ {m \ times m} $,我们想找到$ \ mathbf {w} \ in \ {0,1 \} ^ {m \ times $} $这样$ \ | \ mathbf {m} - \ mathbf {w} \ mathbf {w} ^ \ top \ | _0 $在所有$ \ mathbf {w} $中最小化为$ k $ -parse。这个问题结果表明与恢复线图中的超图以及私人神经网络训练的重建攻击相比密切相关。由于这个问题在最坏的情况下,我们研究了在这些重建攻击的背景下出现的自然平均水平变体:$ \ mathbf {m} = \ mathbf {w} \ mathbf {w} ^ {\ top $ \ mathbf {w} $ \ mathbf {w} $ k $ -parse行的随机布尔矩阵,目标是恢复$ \ mathbf {w} $上列排列。等效,这可以被认为是从其线图中恢复均匀随机的k $ k $。我们的主要结果是基于对$ \ MATHBF {W} $的引导高阶信息的此问题的多项式算法,然后分解适当的张量。我们分析中的关键成分,可能是独立的兴趣,是表示这种矩阵$ \ mathbf {w} $在$ m = \ widetilde {\ omega}(r)时,这一矩阵$ \ mathbf {w} $具有高概率。 $,我们使用Littlewood-Offord理论的工具和二进制Krawtchouk多项式的估算。
translated by 谷歌翻译
对对抗性示例强大的学习分类器已经获得了最近的关注。标准强大学习框架的主要缺点是人为强大的RADIUS $ R $,适用于所有输入。这忽略了数据可能是高度异构的事实,在这种情况下,它是合理的,在某些数据区域中,鲁棒性区域应该更大,并且在其他区域中更小。在本文中,我们通过提出名为邻域最佳分类器的新限制分类器来解决此限制,该分类通过使用最接近的支持点的标签扩展其支持之外的贝叶斯最佳分类器。然后,我们认为该分类器可能会使其稳健性区域的大小最大化,但受到等于贝叶斯的准确性的约束。然后,我们存在足够的条件,该条件下可以表示为重量函数的一般非参数方法会聚在此限制,并且显示最近的邻居和内核分类器在某些条件下满足它们。
translated by 谷歌翻译
我们在禁用的对手存在下研究公平分类,允许获得$ \ eta $,选择培训样本的任意$ \ eta $ -flaction,并任意扰乱受保护的属性。由于战略误报,恶意演员或归责的错误,受保护属性可能不正确的设定。和现有的方法,使随机或独立假设对错误可能不满足其在这种对抗环境中的保证。我们的主要贡献是在这种对抗的环境中学习公平分类器的优化框架,这些普遍存在的准确性和公平性提供了可证明的保证。我们的框架适用于多个和非二进制保护属性,专为大类线性分数公平度量设计,并且还可以处理除了受保护的属性之外的扰动。我们证明了我们框架的近密性,对自然假设类别的保证:没有算法可以具有明显更好的准确性,并且任何具有更好公平性的算法必须具有较低的准确性。凭经验,我们评估了我们对统计率的统计税务统计税率为一个对手的统计税率产生的分类机。
translated by 谷歌翻译
我们研究了小组测试问题,其目标是根据合并测试的结果,确定一组k感染的人,这些k含有稀有疾病,这些人在经过测试中至少有一个受感染的个体时返回阳性的结果。团体。我们考虑将个人分配给测试的两个不同的简单随机过程:恒定柱设计和伯努利设计。我们的第一组结果涉及基本统计限制。对于恒定柱设计,我们给出了一个新的信息理论下限,这意味着正确识别的感染者的比例在测试数量越过特定阈值时会经历急剧的“全或全或无所不包”的相变。对于Bernoulli设计,我们确定解决相关检测问题所需的确切测试数量(目的是区分小组测试实例和纯噪声),改善Truong,Aldridge和Scarlett的上限和下限(2020)。对于两个小组测试模型,我们还研究了计算有效(多项式时间)推理程序的能力。我们确定了解决检测问题的低度多项式算法所需的精确测试数量。这为在少量稀疏度的检测和恢复问题中都存在固有的计算统计差距提供了证据。值得注意的是,我们的证据与Iliopoulos和Zadik(2021)相反,后者预测了Bernoulli设计中没有计算统计差距。
translated by 谷歌翻译
对抗性鲁棒性是各种现代机器学习应用中的关键财产。虽然它是最近几个理论研究的主题,但与对抗性稳健性有关的许多重要问题仍然是开放的。在这项工作中,我们研究了有关对抗对抗鲁棒性的贝叶斯最优性的根本问题。我们提供了一般的充分条件,可以保证贝叶斯最佳分类器的存在,以满足对抗性鲁棒性。我们的结果可以提供一种有用的工具,用于随后研究对抗性鲁棒性及其一致性的替代损失。这份稿件是“关于普通贝叶斯分类器的存在”在神经潮端中发表的延伸版本。原始纸张的结果不适用于一些非严格凸的规范。在这里,我们将结果扩展到所有可能的规范。
translated by 谷歌翻译