本文介绍了一个数据集,用于培训和评估方法,以估算由标准RGB摄像机捕获的任务演示中手持工具的6D姿势。尽管6D姿势估计方法取得了重大进展,但它们的性能通常受到严重遮挡的对象的限制,这在模仿学习中是一个常见的情况,而操纵手通常会部分遮住对象。当前,缺乏数据集可以使这些条件的稳健6D姿势估计方法开发。为了克服这个问题,我们收集了一个新的数据集(IMITROB),该数据集针对模仿学习和其他人类持有工具并执行任务的其他应用中的6D姿势估计。该数据集包含三个不同工具和六个操纵任务的图像序列,这些任务具有两个相机观点,四个人类受试者和左/右手。每个图像都伴随着由HTC Vive运动跟踪设备获得的6D对象姿势的准确地面真相测量。通过训练和评估各种设置中的最新6D对象估计方法(DOPE)来证明数据集的使用。数据集和代码可在http://imitrob.ciirc.cvut.cz/imitrobdataset.php上公开获得。
translated by 谷歌翻译
Estimating the 6D pose of objects is one of the major fields in 3D computer vision. Since the promising outcomes from instance-level pose estimation, the research trends are heading towards category-level pose estimation for more practical application scenarios. However, unlike well-established instance-level pose datasets, available category-level datasets lack annotation quality and provided pose quantity. We propose the new category level 6D pose dataset HouseCat6D featuring 1) Multi-modality of Polarimetric RGB+P and Depth, 2) Highly diverse 194 objects of 10 household object categories including 2 photometrically challenging categories, 3) High-quality pose annotation with an error range of only 1.35 mm to 1.74 mm, 4) 41 large scale scenes with extensive viewpoint coverage, 5) Checkerboard-free environment throughout the entire scene. We also provide benchmark results of state-of-the-art category-level pose estimation networks.
translated by 谷歌翻译
透明的物体在家庭环境中无处不在,并且对视觉传感和感知系统构成了不同的挑战。透明物体的光学特性使常规的3D传感器仅对物体深度和姿势估计不可靠。这些挑战是由重点关注现实世界中透明对象的大规模RGB深度数据集突出了这些挑战。在这项工作中,我们为名为ClearPose的大规模现实世界RGB深度透明对象数据集提供了一个用于分割,场景级深度完成和以对象为中心的姿势估计任务的基准数据集。 ClearPose数据集包含超过350K标记的现实世界RGB深度框架和5M实例注释,涵盖了63个家用对象。该数据集包括在各种照明和遮挡条件下在日常生活中常用的对象类别,以及具有挑战性的测试场景,例如不透明或半透明物体的遮挡病例,非平面取向,液体的存在等。 - 艺术深度完成和对象构成清晰度上的深神经网络。数据集和基准源代码可在https://github.com/opipari/clearpose上获得。
translated by 谷歌翻译
We introduce an approach for recovering the 6D pose of multiple known objects in a scene captured by a set of input images with unknown camera viewpoints. First, we present a single-view single-object 6D pose estimation method, which we use to generate 6D object pose hypotheses. Second, we develop a robust method for matching individual 6D object pose hypotheses across different input images in order to jointly estimate camera viewpoints and 6D poses of all objects in a single consistent scene. Our approach explicitly handles object symmetries, does not require depth measurements, is robust to missing or incorrect object hypotheses, and automatically recovers the number of objects in the scene. Third, we develop a method for global scene refinement given multiple object hypotheses and their correspondences across views. This is achieved by solving an object-level bundle adjustment problem that refines the poses of cameras and objects to minimize the reprojection error in all views. We demonstrate that the proposed method, dubbed Cosy-Pose, outperforms current state-of-the-art results for single-view and multi-view 6D object pose estimation by a large margin on two challenging benchmarks: the YCB-Video and T-LESS datasets. Code and pre-trained models are available on the project webpage. 5
translated by 谷歌翻译
Estimating 6D poses of objects from images is an important problem in various applications such as robot manipulation and virtual reality. While direct regression of images to object poses has limited accuracy, matching rendered images of an object against the input image can produce accurate results. In this work, we propose a novel deep neural network for 6D pose matching named DeepIM. Given an initial pose estimation, our network is able to iteratively refine the pose by matching the rendered image against the observed image. The network is trained to predict a relative pose transformation using a disentangled representation of 3D location and 3D orientation and an iterative training process. Experiments on two commonly used benchmarks for 6D pose estimation demonstrate that DeepIM achieves large improvements over stateof-the-art methods. We furthermore show that DeepIM is able to match previously unseen objects.
translated by 谷歌翻译
We introduce a new dataset, Human3.6M, of 3.6 Million accurate 3D Human poses, acquired by recording the performance of 5 female and 6 male subjects, under 4 different viewpoints, for training realistic human sensing systems and for evaluating the next generation of human pose estimation models and algorithms. Besides increasing the size of the datasets in the current state of the art by several orders of magnitude, we also aim to complement such datasets with a diverse set of motions and poses encountered as part of typical human activities (taking photos, talking on the phone, posing, greeting, eating, etc.), with additional synchronized image, human motion capture and time of flight (depth) data, and with accurate 3D body scans of all the subject actors involved. We also provide controlled mixed reality evaluation scenarios where 3D human models are animated using motion capture and inserted using correct 3D geometry, in complex real environments, viewed with moving cameras, and under occlusion. Finally, we provide a set of large scale statistical models and detailed evaluation baselines for the dataset illustrating its diversity and the scope for improvement by future work in the research community. Our experiments show that our best large scale model can leverage our full training set to obtain a 20% improvement in performance compared to a training set of the scale of the largest existing public dataset for this problem. Yet the potential for improvement by leveraging higher capacity, more complex models with our large dataset, is substantially vaster and should stimulate future research. The dataset together with code for the associated large-scale learning models, features, visualization tools, as well as the evaluation server, is available online at http://vision.imar.ro/human3.6m.
translated by 谷歌翻译
视觉感知任务通常需要大量的标记数据,包括3D姿势和图像空间分割掩码。创建此类培训数据集的过程可能很难或耗时,可以扩展到一般使用的功效。考虑对刚性对象的姿势估计的任务。在大型公共数据集中接受培训时,基于神经网络的深层方法表现出良好的性能。但是,将这些网络调整为其他新颖对象,或针对不同环境的现有模型进行微调,需要大量的时间投资才能产生新标记的实例。为此,我们提出了ProgressLabeller作为一种方法,以更有效地以可扩展的方式从彩色图像序列中生成大量的6D姿势训练数据。 ProgressLabeller还旨在支持透明或半透明的对象,以深度密集重建的先前方法将失败。我们通过快速创建一个超过1M样品的数据集来证明ProgressLabeller的有效性,我们将其微调一个最先进的姿势估计网络,以显着提高下游机器人的抓地力。 ProgressLabeller是https://github.com/huijiezh/progresslabeller的开放源代码。
translated by 谷歌翻译
We present a new dataset for 6-DoF pose estimation of known objects, with a focus on robotic manipulation research. We propose a set of toy grocery objects, whose physical instantiations are readily available for purchase and are appropriately sized for robotic grasping and manipulation. We provide 3D scanned textured models of these objects, suitable for generating synthetic training data, as well as RGBD images of the objects in challenging, cluttered scenes exhibiting partial occlusion, extreme lighting variations, multiple instances per image, and a large variety of poses. Using semi-automated RGBD-to-model texture correspondences, the images are annotated with ground truth poses accurate within a few millimeters. We also propose a new pose evaluation metric called ADD-H based on the Hungarian assignment algorithm that is robust to symmetries in object geometry without requiring their explicit enumeration. We share pre-trained pose estimators for all the toy grocery objects, along with their baseline performance on both validation and test sets. We offer this dataset to the community to help connect the efforts of computer vision researchers with the needs of roboticists.
translated by 谷歌翻译
A key requirement for leveraging supervised deep learning methods is the availability of large, labeled datasets. Unfortunately, in the context of RGB-D scene understanding, very little data is available -current datasets cover a small range of scene views and have limited semantic annotations. To address this issue, we introduce ScanNet, an RGB-D video dataset containing 2.5M views in 1513 scenes annotated with 3D camera poses, surface reconstructions, and semantic segmentations. To collect this data, we designed an easy-to-use and scalable RGB-D capture system that includes automated surface reconstruction and crowdsourced semantic annotation. We show that using this data helps achieve state-of-the-art performance on several 3D scene understanding tasks, including 3D object classification, semantic voxel labeling, and CAD model retrieval.
translated by 谷歌翻译
光有许多可以通过视觉传感器被动测量的特性。色带分离波长和强度可以说是单眼6D对象姿态估计的最常用的波长。本文探讨了互补偏振信息的互补信息,即光波振荡的方向,可以影响姿态预测的准确性。一种混合模型,利用数据驱动的学习策略共同利用物理代理,并在具有不同量的光度复杂度的物体上进行设计和仔细测试。我们的设计不仅显着提高了与光度 - 最先进的方法相关的姿态精度,而且还使对象姿势估计用于高反射性和透明的物体。
translated by 谷歌翻译
了解来自第一人称观点的社交互动对于许多应用来说至关重要,从辅助机器人到AR / VR。谈论相互作用的第一步是理解人类的姿势和形状。但是,该领域的研究目前受到数据缺乏的阻碍。现有数据集根据大小,注释,地面真实捕获方式或相互作用的多样性有限。我们通过提出EGOBODY来解决这一缺点,这是一个用于复杂3D场景中的社交交互的新型大规模数据集。我们采用Microsoft Hololens2耳机来记录富裕的EGEntric数据流(包括RGB,深度,眼睛凝视,头部和手动跟踪)。为了获得准确的3D地面真理,我们将耳机用多kinect钻机校准并配合富有呈现的SMPL-X体网格到多视图RGB-D帧,重建3D人类姿势和相对于场景的形状。我们收集68个序列,跨越不同的社会学互动类别,并提出了从自我监视视图的3D全体姿态和形状估计的第一个基准。我们的数据集和代码将在https://sanweiliti.github.io/egobody/egobody.html中进行研究。
translated by 谷歌翻译
在全球坐标系中,基于颜色的双手3D姿势估计在许多应用中至关重要。但是,很少有专门用于此任务的数据集,并且没有现有数据集支持在非实验室环境中的估计。这在很大程度上归因于3D手姿势注释所需的复杂数据收集过程,这也导致难以获得野生估计所需的视觉多样性水平的实例。为了实现这一目标,最近提出了一个大规模的数据集EGO2HANDS来解决野外双手分割和检测的任务。拟议的基于组成的数据生成技术可以创建具有质量,数量和多样性的双手实例,从而将其推广到看不见的域。在这项工作中,我们提出了EGO2Handspose,这是包含3D手姿势注释的EGO2HAND的扩展,并且是第一个在看不见域中启用基于颜色的两手3D跟踪的数据集。为此,我们开发了一组参数拟合算法以启用1)使用单个图像的3D手姿势注释,2)自动转换从2D到3D手势和3)具有时间一致性的准确双手跟踪。我们在多阶段管道上提供了增量的定量分析,并表明我们数据集中的培训达到了最新的结果,这些结果大大胜过其他数据集,以实现以自我为中心的双手全球3D姿势估计的任务。
translated by 谷歌翻译
We introduce MegaPose, a method to estimate the 6D pose of novel objects, that is, objects unseen during training. At inference time, the method only assumes knowledge of (i) a region of interest displaying the object in the image and (ii) a CAD model of the observed object. The contributions of this work are threefold. First, we present a 6D pose refiner based on a render&compare strategy which can be applied to novel objects. The shape and coordinate system of the novel object are provided as inputs to the network by rendering multiple synthetic views of the object's CAD model. Second, we introduce a novel approach for coarse pose estimation which leverages a network trained to classify whether the pose error between a synthetic rendering and an observed image of the same object can be corrected by the refiner. Third, we introduce a large-scale synthetic dataset of photorealistic images of thousands of objects with diverse visual and shape properties and show that this diversity is crucial to obtain good generalization performance on novel objects. We train our approach on this large synthetic dataset and apply it without retraining to hundreds of novel objects in real images from several pose estimation benchmarks. Our approach achieves state-of-the-art performance on the ModelNet and YCB-Video datasets. An extensive evaluation on the 7 core datasets of the BOP challenge demonstrates that our approach achieves performance competitive with existing approaches that require access to the target objects during training. Code, dataset and trained models are available on the project page: https://megapose6d.github.io/.
translated by 谷歌翻译
The goal of this paper is to estimate the 6D pose and dimensions of unseen object instances in an RGB-D image. Contrary to "instance-level" 6D pose estimation tasks, our problem assumes that no exact object CAD models are available during either training or testing time. To handle different and unseen object instances in a given category, we introduce Normalized Object Coordinate Space (NOCS)-a shared canonical representation for all possible object instances within a category. Our region-based neural network is then trained to directly infer the correspondence from observed pixels to this shared object representation (NOCS) along with other object information such as class label and instance mask. These predictions can be combined with the depth map to jointly estimate the metric 6D pose and dimensions of multiple objects in a cluttered scene. To train our network, we present a new contextaware technique to generate large amounts of fully annotated mixed reality data. To further improve our model and evaluate its performance on real data, we also provide a fully annotated real-world dataset with large environment and instance variation. Extensive experiments demonstrate that the proposed method is able to robustly estimate the pose and size of unseen object instances in real environments while also achieving state-of-the-art performance on standard 6D pose estimation benchmarks.
translated by 谷歌翻译
Traditional approaches to extrinsic calibration use fiducial markers and learning-based approaches rely heavily on simulation data. In this work, we present a learning-based markerless extrinsic calibration system that uses a depth camera and does not rely on simulation data. We learn models for end-effector (EE) segmentation, single-frame rotation prediction and keypoint detection, from automatically generated real-world data. We use a transformation trick to get EE pose estimates from rotation predictions and a matching algorithm to get EE pose estimates from keypoint predictions. We further utilize the iterative closest point algorithm, multiple-frames, filtering and outlier detection to increase calibration robustness. Our evaluations with training data from multiple camera poses and test data from previously unseen poses give sub-centimeter and sub-deciradian average calibration and pose estimation errors. We also show that a carefully selected single training pose gives comparable results.
translated by 谷歌翻译
我们构建了一个系统,可以通过自己的手展示动作,使任何人都可以控制机器人手和手臂。机器人通过单个RGB摄像机观察人类操作员,并实时模仿其动作。人的手和机器人的手在形状,大小和关节结构上有所不同,并且从单个未校准的相机进行这种翻译是一个高度不受约束的问题。此外,重新定位的轨迹必须有效地在物理机器人上执行任务,这要求它们在时间上平稳且没有自我收集。我们的关键见解是,虽然配对的人类机器人对应数据的收集价格昂贵,但互联网包含大量丰富而多样的人类手视频的语料库。我们利用这些数据来训练一个理解人手并将人类视频流重新定位的系统训练到机器人手臂轨迹中,该轨迹是平稳,迅速,安全和语义上与指导演示的相似的系统。我们证明,它使以前未经训练的人能够在各种灵巧的操纵任务上进行机器人的态度。我们的低成本,无手套,无标记的远程遥控系统使机器人教学更容易访问,我们希望它可以帮助机器人学习在现实世界中自主行动。视频https://robotic-telekinesis.github.io/
translated by 谷歌翻译
在本文中,我们介绍一种方法来自动重建与来自单个RGB视频相互作用的人的3D运动。我们的方法估计人的3D与物体姿势,接触位置和施加在人体上的接触力的姿势。这项工作的主要贡献是三倍。首先,我们介绍一种通过建模触点和相互作用的动态来联合估计人与人的运动和致动力的方法。这是一个大规模的轨迹优化问题。其次,我们开发一种方法来从输入视频自动识别,从输入视频中识别人和物体或地面之间的2D位置和时序,从而显着简化了优化的复杂性。第三,我们在最近的视频+ Mocap数据集上验证了捕获典型的Parkour行动的方法,并在互联网视频的新数据集上展示其表现,显示人们在不受约束的环境中操纵各种工具。
translated by 谷歌翻译
人类性能捕获是一种非常重要的计算机视觉问题,在电影制作和虚拟/增强现实中具有许多应用。许多以前的性能捕获方法需要昂贵的多视图设置,或者没有恢复具有帧到帧对应关系的密集时空相干几何。我们提出了一种新颖的深度致密人体性能捕获的深层学习方法。我们的方法是基于多视图监督的弱监督方式培训,完全删除了使用3D地面真理注释的培训数据的需求。网络架构基于两个单独的网络,将任务解散为姿势估计和非刚性表面变形步骤。广泛的定性和定量评估表明,我们的方法在质量和稳健性方面优于现有技术。这项工作是DeepCAP的扩展版本,在那里我们提供更详细的解释,比较和结果以及应用程序。
translated by 谷歌翻译
We propose a single-shot approach for simultaneously detecting an object in an RGB image and predicting its 6D pose without requiring multiple stages or having to examine multiple hypotheses. Unlike a recently proposed single-shot technique for this task [11] that only predicts an approximate 6D pose that must then be refined, ours is accurate enough not to require additional post-processing. As a result, it is much faster -50 fps on a Titan X (Pascal) GPU -and more suitable for real-time processing. The key component of our method is a new CNN architecture inspired by [28,29] that directly predicts the 2D image locations of the projected vertices of the object's 3D bounding box. The object's 6D pose is then estimated using a PnP algorithm.For single object and multiple object pose estimation on the LINEMOD and OCCLUSION datasets, our approach substantially outperforms other recent 26] when they are all used without postprocessing. During post-processing, a pose refinement step can be used to boost the accuracy of these two methods, but at 10 fps or less, they are much slower than our method.
translated by 谷歌翻译
尽管最近的进步,但是,尽管最近的进展,但是从单个图像中的人类姿势的全3D估计仍然是一个具有挑战性的任务。在本文中,我们探讨了关于场景几何体的强先前信息的假设可用于提高姿态估计精度。为了主弱地解决这个问题,我们已经组装了一种新的$ \ textbf {几何姿势提供} $ DataSet,包括与各种丰富的3D环境交互的人员的多视图图像。我们利用商业运动捕获系统来收集场景本身的姿势和构造精确的几何3D CAD模型的金标估计。要将对现有框架的现有框架注入图像的现有框架,我们介绍了一种新颖的,基于视图的场景几何形状,一个$ \ textbf {多层深度图} $,它采用了多次射线跟踪到简明地编码沿着每种相机视图光线方向的多个表面入口和退出点。我们提出了两种不同的机制,用于集成多层深度信息姿势估计:输入作为升降2D姿势的编码光线特征,其次是促进学习模型以支持几何一致姿态估计的可差异损失。我们通过实验展示这些技术可以提高3D姿势估计的准确性,特别是在遮挡和复杂场景几何形状的存在中。
translated by 谷歌翻译