最近的工作认为,强大的培训需要比标准分类所需的数据集大得多。在CiFar-10和CiFar-100上,这转化为仅培训的型号之间的可稳健稳健精度差距,这些型号来自原始训练集的数据,那些从“80万微小图像”数据集(TI-80M)提取的附加数据培训。在本文中,我们探讨了单独培训的生成模型如何利用人为地提高原始训练集的大小,并改善对$ \ ell_p $ norm-inded扰动的对抗鲁棒性。我们确定了包含额外生成数据的充分条件可以改善鲁棒性,并证明可以显着降低具有额外实际数据训练的模型的强大准确性差距。令人惊讶的是,我们甚至表明即使增加了非现实的随机数据(由高斯采样产生)也可以改善鲁棒性。我们在Cifar-10,CiFar-100,SVHN和Tinyimagenet上评估我们的方法,而$ \ ell_ indty $和$ \ ell_2 $ norm-indeded扰动尺寸$ \ epsilon = 8/255 $和$ \ epsilon = 128/255 $分别。与以前的最先进的方法相比,我们以强大的准确性显示出大的绝对改进。反对$ \ ell_ \ infty $ norm-indeded扰动尺寸$ \ epsilon = 8/255 $,我们的车型分别在Cifar-10和Cifar-100上达到66.10%和33.49%(改善状态)最新美术+ 8.96%和+ 3.29%)。反对$ \ ell_2 $ norm-indeded扰动尺寸$ \ epsilon = 128/255 $,我们的型号在Cifar-10(+ 3.81%)上实现78.31%。这些结果击败了使用外部数据的最先前的作品。
translated by 谷歌翻译
对抗性训练遭受了稳健的过度装备,这是一种现象,在训练期间鲁棒测试精度开始减少。在本文中,我们专注于通过使用常见的数据增强方案来减少强大的过度装备。我们证明,与先前的发现相反,当与模型重量平均结合时,数据增强可以显着提高鲁棒精度。此外,我们比较各种增强技术,并观察到空间组合技术适用于对抗性培训。最后,我们评估了我们在Cifar-10上的方法,而不是$ \ ell_ indty $和$ \ ell_2 $ norm-indeded扰动分别为尺寸$ \ epsilon = 8/255 $和$ \ epsilon = 128/255 $。与以前的最先进的方法相比,我们表现出+ 2.93%的绝对改善+ 2.93%,+ 2.16%。特别是,反对$ \ ell_ infty $ norm-indeded扰动尺寸$ \ epsilon = 8/255 $,我们的模型达到60.07%的强劲准确性而不使用任何外部数据。我们还通过这种方法实现了显着的性能提升,同时使用其他架构和数据集如CiFar-100,SVHN和TinyimageNet。
translated by 谷歌翻译
现代神经网络Excel在图像分类中,但它们仍然容易受到常见图像损坏,如模糊,斑点噪音或雾。最近的方法关注这个问题,例如Augmix和Deepaulment,引入了在预期运行的防御,以期望图像损坏分布。相比之下,$ \ ell_p $ -norm界限扰动的文献侧重于针对最坏情况损坏的防御。在这项工作中,我们通过提出防范内人来调和两种方法,这是一种优化图像到图像模型的参数来产生对外损坏的增强图像的技术。我们理论上激发了我们的方法,并为其理想化版本的一致性以及大纲领提供了足够的条件。我们的分类机器在预期对CiFar-10-C进行的常见图像腐败基准上提高了最先进的,并改善了CIFAR-10和ImageNet上的$ \ ell_p $ -norm有界扰动的最坏情况性能。
translated by 谷歌翻译
在测试时间进行优化的自适应防御能力有望改善对抗性鲁棒性。我们对这种自适应测试时间防御措施进行分类,解释其潜在的好处和缺点,并评估图像分类的最新自适应防御能力的代表性。不幸的是,经过我们仔细的案例研究评估时,没有任何显着改善静态防御。有些甚至削弱了基本静态模型,同时增加了推理计算。尽管这些结果令人失望,但我们仍然认为自适应测试时间防御措施是一项有希望的研究途径,因此,我们为他们的彻底评估提供了建议。我们扩展了Carlini等人的清单。(2019年)通过提供针对自适应防御的具体步骤。
translated by 谷歌翻译
在本文中,我们询问视觉变形金刚(VIT)是否可以作为改善机器学习模型对抗逃避攻击的对抗性鲁棒性的基础结构。尽管较早的作品集中在改善卷积神经网络上,但我们表明VIT也非常适合对抗训练以实现竞争性能。我们使用自定义的对抗训练配方实现了这一目标,该配方是在Imagenet数据集的一部分上使用严格的消融研究发现的。与卷积相比,VIT的规范培训配方建议强大的数据增强,部分是为了补偿注意力模块的视力归纳偏置。我们表明,该食谱在用于对抗训练时可实现次优性能。相比之下,我们发现省略所有重型数据增强,并添加一些额外的零件($ \ varepsilon $ -Warmup和更大的重量衰减),从而大大提高了健壮的Vits的性能。我们表明,我们的配方在完整的Imagenet-1k上概括了不同类别的VIT体系结构和大规模模型。此外,调查了模型鲁棒性的原因,我们表明,在使用我们的食谱时,在训练过程中产生强烈的攻击更加容易,这会在测试时提高鲁棒性。最后,我们通过提出一种量化对抗性扰动的语义性质并强调其与模型的鲁棒性的相关性来进一步研究对抗训练的结果。总体而言,我们建议社区应避免将VIT的规范培训食谱转换为在对抗培训的背景下进行强大的培训和重新思考常见的培训选择。
translated by 谷歌翻译
我们理论上和经验地证明,对抗性鲁棒性可以显着受益于半体验学习。从理论上讲,我们重新审视了Schmidt等人的简单高斯模型。这显示了标准和稳健分类之间的示例复杂性差距。我们证明了未标记的数据桥接这种差距:简单的半体验学习程序(自我训练)使用相同数量的达到高标准精度所需的标签实现高的强大精度。经验上,我们增强了CiFar-10,使用50万微小的图像,使用了8000万微小的图像,并使用强大的自我训练来优于最先进的鲁棒精度(i)$ \ ell_ infty $鲁棒性通过对抗培训和(ii)认证$ \ ell_2 $和$ \ ell_ \ infty $鲁棒性通过随机平滑的几个强大的攻击。在SVHN上,添加DataSet自己的额外训练集,删除的标签提供了4到10个点的增益,在使用额外标签的1点之内。
translated by 谷歌翻译
对共同腐败的稳健性的文献表明对逆势培训是否可以提高这种环境的性能,没有达成共识。 First, we show that, when used with an appropriately selected perturbation radius, $\ell_p$ adversarial training can serve as a strong baseline against common corruptions improving both accuracy and calibration.然后,我们解释了为什么对抗性训练比具有简单高斯噪声的数据增强更好地表现,这被观察到是对共同腐败的有意义的基线。与此相关,我们确定了高斯增强过度适用于用于培训的特定标准偏差的$ \ sigma $ -oviting现象,这对培训具有显着不利影响的普通腐败精度。我们讨论如何缓解这一问题,然后如何通过学习的感知图像贴片相似度引入对抗性训练的有效放松来进一步增强$ \ ell_p $普发的培训。通过对CiFar-10和Imagenet-100的实验,我们表明我们的方法不仅改善了$ \ ell_p $普发的培训基线,而且还有累积的收益与Augmix,Deepaulment,Ant和Sin等数据增强方法,导致普通腐败的最先进的表现。我们的实验代码在HTTPS://github.com/tml-epfl/adv-training - 窗子上公开使用。
translated by 谷歌翻译
It is common practice in deep learning to use overparameterized networks and train for as long as possible; there are numerous studies that show, both theoretically and empirically, that such practices surprisingly do not unduly harm the generalization performance of the classifier. In this paper, we empirically study this phenomenon in the setting of adversarially trained deep networks, which are trained to minimize the loss under worst-case adversarial perturbations. We find that overfitting to the training set does in fact harm robust performance to a very large degree in adversarially robust training across multiple datasets (SVHN, CIFAR-10, CIFAR-100, and ImageNet) and perturbation models ( ∞ and 2 ). Based upon this observed effect, we show that the performance gains of virtually all recent algorithmic improvements upon adversarial training can be matched by simply using early stopping. We also show that effects such as the double descent curve do still occur in adversarially trained models, yet fail to explain the observed overfitting. Finally, we study several classical and modern deep learning remedies for overfitting, including regularization and data augmentation, and find that no approach in isolation improves significantly upon the gains achieved by early stopping. All code for reproducing the experiments as well as pretrained model weights and training logs can be found at https://github.com/ locuslab/robust_overfitting.
translated by 谷歌翻译
The study on improving the robustness of deep neural networks against adversarial examples grows rapidly in recent years. Among them, adversarial training is the most promising one, which flattens the input loss landscape (loss change with respect to input) via training on adversarially perturbed examples. However, how the widely used weight loss landscape (loss change with respect to weight) performs in adversarial training is rarely explored. In this paper, we investigate the weight loss landscape from a new perspective, and identify a clear correlation between the flatness of weight loss landscape and robust generalization gap. Several well-recognized adversarial training improvements, such as early stopping, designing new objective functions, or leveraging unlabeled data, all implicitly flatten the weight loss landscape. Based on these observations, we propose a simple yet effective Adversarial Weight Perturbation (AWP) to explicitly regularize the flatness of weight loss landscape, forming a double-perturbation mechanism in the adversarial training framework that adversarially perturbs both inputs and weights. Extensive experiments demonstrate that AWP indeed brings flatter weight loss landscape and can be easily incorporated into various existing adversarial training methods to further boost their adversarial robustness.
translated by 谷歌翻译
这项工作评估了生成模型的质量度量的鲁棒性,例如INPECTION评分(IS)和FR \'Echet Inception距离(FID)。类似于深层模型对各种对抗性攻击的脆弱性,我们表明这种指标也可以通过添加剂像素扰动来操纵。我们的实验表明,可以生成分数很高但知觉质量低的图像分布。相反,人们可以优化对小型扰动,当将其添加到现实世界图像中时,会使他们的分数恶化。我们进一步将评估扩展到生成模型本身,包括最先进的网络样式。我们展示了生成模型和FID的脆弱性,反对潜在空间中的累加扰动。最后,我们证明,通过简单地以强大的启动来代替标准发明,可以强大地实现FID。我们通过广泛的实验来验证鲁棒度量的有效性,这表明它对操纵更为强大。
translated by 谷歌翻译
几个数据增强方法部署了未标记的分配(UID)数据,以弥合神经网络的培训和推理之间的差距。然而,这些方法在UID数据的可用性方面具有明确的限制和伪标签上的算法的依赖性。在此,我们提出了一种数据增强方法,通过使用缺乏上述问题的分发(OOD)数据来改善对抗和标准学习的泛化。我们展示了如何在理论上使用每个学习场景中的数据来改进泛化,并通过Cifar-10,CiFar-100和ImageNet的子集进行化学理论分析。结果表明,即使在似乎与人类角度几乎没有相关的图像数据中也是不希望的特征。我们还通过与其他数据增强方法进行比较,介绍了所提出的方法的优点,这些方法可以在没有UID数据的情况下使用。此外,我们证明该方法可以进一步改善现有的最先进的对抗培训。
translated by 谷歌翻译
作为研究界,我们仍然缺乏对对抗性稳健性的进展的系统理解,这通常使得难以识别训练强大模型中最有前途的想法。基准稳健性的关键挑战是,其评估往往是出错的导致鲁棒性高估。我们的目标是建立对抗性稳健性的标准化基准,尽可能准确地反映出考虑在合理的计算预算范围内所考虑的模型的稳健性。为此,我们首先考虑图像分类任务并在允许的型号上引入限制(可能在将来宽松)。我们评估了与AutoAtrack的对抗鲁棒性,白和黑箱攻击的集合,最近在大规模研究中显示,与原始出版物相比,改善了几乎所有稳健性评估。为防止对自动攻击进行新防御的过度适应,我们欢迎基于自适应攻击的外部评估,特别是在自动攻击稳健性潜在高估的地方。我们的排行榜,托管在https://robustbench.github.io/,包含120多个模型的评估,并旨在反映在$ \ ell_ \ infty $的一套明确的任务上的图像分类中的当前状态 - 和$ \ ell_2 $ -Threat模型和共同腐败,未来可能的扩展。此外,我们开源源是图书馆https://github.com/robustbench/robustbench,可以提供对80多个强大模型的统一访问,以方便他们的下游应用程序。最后,根据收集的模型,我们分析了稳健性对分布换档,校准,分配检测,公平性,隐私泄漏,平滑度和可转移性的影响。
translated by 谷歌翻译
最近的一些研究表明,使用额外的分配数据可能会导致高水平的对抗性鲁棒性。但是,不能保证始终可以为所选数据集获得足够的额外数据。在本文中,我们提出了一种有偏见的多域对抗训练(BIAMAT)方法,该方法可以使用公开可用的辅助数据集诱导训练数据放大,而无需在主要和辅助数据集之间进行类分配匹配。提出的方法可以通过多域学习利用辅助数据集来实现主数据集上的对抗性鲁棒性。具体而言,可以通过使用Biamat的应用来实现对鲁棒和非鲁棒特征的数据扩增,如通过理论和经验分析所证明的。此外,我们证明,尽管由于辅助和主要数据之间的分布差异,现有方法容易受到负转移的影响,但提出的方法使神经网络能够通过应用程序通过应用程序来成功处理域差异来灵活地利用各种图像数据集来进行对抗训练基于置信的选择策略。预先训练的模型和代码可在:\ url {https://github.com/saehyung-lee/biamat}中获得。
translated by 谷歌翻译
我们表明,当考虑到图像域$ [0,1] ^ D $时,已建立$ L_1 $ -Projected梯度下降(PGD)攻击是次优,因为它们不认为有效的威胁模型是交叉点$ l_1 $ -ball和$ [0,1] ^ d $。我们研究了这种有效威胁模型的最陡渐进步骤的预期稀疏性,并表明该组上的确切投影是计算可行的,并且产生更好的性能。此外,我们提出了一种自适应形式的PGD,即使具有小的迭代预算,这也是非常有效的。我们的结果$ l_1 $ -apgd是一个强大的白盒攻击,表明先前的作品高估了他们的$ l_1 $ -trobustness。使用$ l_1 $ -apgd for vercersarial培训,我们获得一个强大的分类器,具有sota $ l_1 $ -trobustness。最后,我们将$ l_1 $ -apgd和平方攻击的适应组合到$ l_1 $ to $ l_1 $ -autoattack,这是一个攻击的集合,可靠地评估$ l_1 $ -ball与$的威胁模型的对抗鲁棒性进行对抗[ 0,1] ^ d $。
translated by 谷歌翻译
对抗性的鲁棒性已经成为深度学习的核心目标,无论是在理论和实践中。然而,成功的方法来改善对抗的鲁棒性(如逆势训练)在不受干扰的数据上大大伤害了泛化性能。这可能会对对抗性鲁棒性如何影响现实世界系统的影响(即,如果它可以提高未受干扰的数据的准确性),许多人可能选择放弃鲁棒性)。我们提出内插对抗培训,该培训最近雇用了在对抗培训框架内基于插值的基于插值的培训方法。在CiFar -10上,对抗性训练增加了标准测试错误(当没有对手时)从4.43%到12.32%,而我们的内插对抗培训我们保留了对抗性的鲁棒性,同时实现了仅6.45%的标准测试误差。通过我们的技术,强大模型标准误差的相对增加从178.1%降至仅为45.5%。此外,我们提供内插对抗性培训的数学分析,以确认其效率,并在鲁棒性和泛化方面展示其优势。
translated by 谷歌翻译
Training adversarially robust discriminative (i.e., softmax) classifier has been the dominant approach to robust classification. Building on recent work on adversarial training (AT)-based generative models, we investigate using AT to learn unnormalized class-conditional density models and then performing generative robust classification. Our result shows that, under the condition of similar model capacities, the generative robust classifier achieves comparable performance to a baseline softmax robust classifier when the test data is clean or when the test perturbation is of limited size, and much better performance when the test perturbation size exceeds the training perturbation size. The generative classifier is also able to generate samples or counterfactuals that more closely resemble the training data, suggesting that the generative classifier can better capture the class-conditional distributions. In contrast to standard discriminative adversarial training where advanced data augmentation techniques are only effective when combined with weight averaging, we find it straightforward to apply advanced data augmentation to achieve better robustness in our approach. Our result suggests that the generative classifier is a competitive alternative to robust classification, especially for problems with limited number of classes.
translated by 谷歌翻译
深度卷积神经网络(CNN)很容易被输入图像的细微,不可察觉的变化所欺骗。为了解决此漏洞,对抗训练会创建扰动模式,并将其包括在培训设置中以鲁棒性化模型。与仅使用阶级有限信息的现有对抗训练方法(例如,使用交叉渗透损失)相反,我们建议利用功能空间中的其他信息来促进更强的对手,这些信息又用于学习强大的模型。具体来说,我们将使用另一类的目标样本的样式和内容信息以及其班级边界信息来创建对抗性扰动。我们以深入监督的方式应用了我们提出的多任务目标,从而提取了多尺度特征知识,以创建最大程度地分开对手。随后,我们提出了一种最大边缘对抗训练方法,该方法可最大程度地减少源图像与其对手之间的距离,并最大程度地提高对手和目标图像之间的距离。与最先进的防御能力相比,我们的对抗训练方法表明了强大的鲁棒性,可以很好地推广到自然发生的损坏和数据分配变化,并保留了清洁示例的模型准确性。
translated by 谷歌翻译
对抗性培训(AT)被认为是对抗对抗攻击最可靠的防御之一。然而,模型培训以牺牲标准精度,并不概括为新的攻击。最近的作用表明,在新型威胁模型中的新威胁模型或神经感知威胁模型中,对普遍威胁模型的对抗样本进行了泛化改进。然而,前者需要确切的流形信息,而后者需要算法放松。通过这些考虑因素,我们利用了具有规范化流的底层歧管信息,确保了确切的歧管的假设保持。此外,我们提出了一种名为联合空间威胁模型(JSTM)的新型威胁模型,其可以作为神经感知威胁模型的特殊情况,这些威胁模型不需要额外放松来制作相应的对抗性攻击。在JSTM下,我们培养了新的对抗性攻击和防御。混合策略提高了神经网络的标准准确性,但与AT结合时牺牲了鲁棒性。为了解决这个问题,我们提出了强大的混合策略,其中我们最大限度地提高了内插图像的逆境,并获得了鲁棒性和预装配。我们的实验表明,内插关节空间对抗性训练(IJSAT)在CiFar-10/100,Om-ImageNet和CiFar-10-C数据集中实现了标准精度,鲁棒性和泛化的良好性能。 IJSAT也是灵活的,可以用作数据增强方法,以提高标准精度,并与诸多换取以提高鲁棒性的方法相结合。
translated by 谷歌翻译
Adaptive attacks have (rightfully) become the de facto standard for evaluating defenses to adversarial examples. We find, however, that typical adaptive evaluations are incomplete. We demonstrate that thirteen defenses recently published at ICLR, ICML and NeurIPS-and which illustrate a diverse set of defense strategies-can be circumvented despite attempting to perform evaluations using adaptive attacks. While prior evaluation papers focused mainly on the end result-showing that a defense was ineffective-this paper focuses on laying out the methodology and the approach necessary to perform an adaptive attack. Some of our attack strategies are generalizable, but no single strategy would have been sufficient for all defenses. This underlines our key message that adaptive attacks cannot be automated and always require careful and appropriate tuning to a given defense. We hope that these analyses will serve as guidance on how to properly perform adaptive attacks against defenses to adversarial examples, and thus will allow the community to make further progress in building more robust models.
translated by 谷歌翻译
Adversarial examples are perturbed inputs designed to fool machine learning models. Adversarial training injects such examples into training data to increase robustness. To scale this technique to large datasets, perturbations are crafted using fast single-step methods that maximize a linear approximation of the model's loss. We show that this form of adversarial training converges to a degenerate global minimum, wherein small curvature artifacts near the data points obfuscate a linear approximation of the loss. The model thus learns to generate weak perturbations, rather than defend against strong ones. As a result, we find that adversarial training remains vulnerable to black-box attacks, where we transfer perturbations computed on undefended models, as well as to a powerful novel single-step attack that escapes the non-smooth vicinity of the input data via a small random step. We further introduce Ensemble Adversarial Training, a technique that augments training data with perturbations transferred from other models. On ImageNet, Ensemble Adversarial Training yields models with stronger robustness to blackbox attacks. In particular, our most robust model won the first round of the NIPS 2017 competition on Defenses against Adversarial Attacks (Kurakin et al., 2017c). However, subsequent work found that more elaborate black-box attacks could significantly enhance transferability and reduce the accuracy of our models.
translated by 谷歌翻译