在这篇扩展的抽象论文中,我们解决了因果机学习模型中的可解释性和针对性正则化的问题。特别是,我们专注于在观察到的混杂因素下估计单个因果/治疗效果的问题,这些问题可以控制并适应治疗对感兴趣结果的影响。针对因果环境调整的Black-Box ML模型在此任务中通常表现良好,但是它们缺乏可解释的输出,无法识别治疗异质性及其功能关系的主要驱动因素。我们提出了一种新型的深层反事实学习结构,用于估计可以同时进行的个人治疗效果:i)传达有针对性的正则化,并产生围绕感兴趣量的量化不确定性(即条件平均治疗效应); ii)解开协变量的基线预后和调节作用,并输出可解释的分数功能,描述了它们与结果的关系。最后,我们通过简单的模拟实验来证明该方法的使用。
translated by 谷歌翻译
大型观察数据越来越多地提供健康,经济和社会科学等学科,研究人员对因果问题而不是预测感兴趣。在本文中,从旨在调查参与学校膳食计划对健康指标的实证研究,研究了使用非参数回归的方法估算异质治疗效果的问题。首先,我们介绍了与观察或非完全随机数据进行因果推断相关的设置和相关的问题,以及如何在统计学习工具的帮助下解决这些问题。然后,我们审查并制定现有最先进的框架的统一分类,允许通过非参数回归模型来估算单个治疗效果。在介绍模型选择问题的简要概述后,我们说明了一些关于三种不同模拟研究的方法的性能。我们通过展示一些关于学校膳食计划数据的实证分析的一些方法的使用来结束。
translated by 谷歌翻译
本文开发了贝叶斯因果林的稀疏诱导版本,最近提出的非参数因果回归模型采用贝叶斯添加剂回归树,专门设计用于使用观察数据来估计异质治疗效果。我们介绍的稀疏诱导组件是通过实证研究的动机,其中不是所有可用的协变量相关的,导致在估计个体治疗效果的兴趣表面底层的不同程度。在这项工作中提供的扩展版本,我们命名贝叶斯因果森林,配备了一对允许模型通过树集合中的相应数量的分裂调节每个协变量的重量。这些前瞻改善了模型对稀疏数据产生过程的适应性,并且允许在治疗效果估计的框架中进行完全贝叶斯特征缩收,从而揭示推动异质性的调节因子。此外,该方法允许先前了解相关的混杂协变量和对模型中掺入结果的影响的相对幅度。我们说明了我们在模拟研究中的方法的表现,与贝叶斯因果林和其他最先进的模型相比,展示如何与越来越多的协变量以及其如何处理强烈混淆的情景。最后,我们还提供了使用真实数据的应用程序的示例。
translated by 谷歌翻译
在广泛的任务中,在包括医疗处理,广告和营销和政策制定的发​​展中,对观测数据进行因果推断非常有用。使用观察数据进行因果推断有两种重大挑战:治疗分配异质性(\ Texit {IE},治疗和未经处理的群体之间的差异),并且没有反事实数据(\ TEXTIT {IE},不知道是什么已经发生了,如果确实得到治疗的人,反而尚未得到治疗)。通过组合结构化推论和有针对性的学习来解决这两个挑战。在结构方面,我们将联合分布分解为风险,混淆,仪器和杂项因素,以及在目标学习方面,我们应用来自影响曲线的规则器,以减少残余偏差。进行了一项消融研究,对基准数据集进行评估表明,TVAE具有竞争力和最先进的艺术表现。
translated by 谷歌翻译
估计治疗的个性化影响是一个复杂但普遍存在的问题。为了解决这个问题,机器学习(ML)关于异质治疗效果估计的最新发展引起了许多复杂的,但不透明的工具:由于它们的灵活性,模块化和学习受限的表示的能力,尤其是神经网络,因此已成为中心对此文学。不幸的是,这种黑匣子的资产是有代价的:模型通常涉及无数的非平凡操作,因此很难理解他们所学到的知识。然而,理解这些模型可能至关重要 - 例如,在医学背景下,发现有关治疗效果的知识异质性可以在临床实践中为治疗处方提供信息。因此,在这项工作中,我们使用事后特征重要性方法来识别影响模型预测的功能。这使我们能够评估沿着先前工作中忽略的新重要维度的治疗效应估计量:我们构建了一个基准测试环境,以经验研究个性化治疗效果模型鉴定预测协变量的能力 - 确定治疗差异反应的协变量。然后,我们的基准测量环境使我们能够对不同类型的治疗效果模型的优势和劣势提供新的见解,因为我们调节了针对治疗效果估计的不同挑战 - 例如预后与预测信息的比率,潜在结果的可能非线性以及混杂的存在和类型。
translated by 谷歌翻译
为目标疾病开发新药物是一项耗时且昂贵的任务,药物重新利用已成为药物开发领域的流行话题。随着许多健康索赔数据可用,已经对数据进行了许多研究。现实世界的数据嘈杂,稀疏,并且具有许多混杂因素。此外,许多研究表明,药物的作用在人群中是异质的。近年来已经出现了许多有关估计异构治疗效果(HTE)(HTE)的高级机器学习模型,并已应用于计量经济学和机器学习社区。这些研究将医学和药物开发视为主要应用领域,但是从HTE方法论到药物开发的转化研究有限。我们旨在将HTE方法介绍到医疗保健领域,并在通过基准实验进行医疗保健行政索赔数据进行基准实验时提供可行性考虑。另外,我们希望使用基准实验来展示如何将模型应用于医疗保健研究时如何解释和评估模型。通过将最近的HTE技术引入生物医学信息学社区的广泛读者,我们希望通过机器学习促进广泛采用因果推断。我们还希望提供HTE具有个性化药物有效性的可行性。
translated by 谷歌翻译
模拟器为因果效应估计制作独特的基准,因为它们不依赖于无法验证的假设或干预现实世界的能力,但往往太简单,无法捕获实际应用的重要方面。我们提出了Alzheimer疾病的模拟器,旨在建模医疗保健数据的复杂性,同时实现因果效应和政策估算的基准。我们将系统拟合到阿尔茨海默病神经影像倡议(ADNI)数据集和地面手工制作组件,从比较治疗试验和观察治疗模式的结果中。模拟器包括改变因果推理任务的性质和难度,例如潜在变量,效果异质性,观察到的历史长度,行为策略和样本大小的参数。我们使用模拟器比较平均和条件治疗效果的估计。
translated by 谷歌翻译
绘制因果推断的基本挑战是,任何单位都没有完全观察到反事实。此外,在观察性研究中,治疗分配可能会混淆。在不满足的条件下,已经出现了许多统计方法,这些方法在给定预处理的协变量下,包括基于倾向得分的方法,基于预后分数的方法和双重稳健方法。不幸的是,对于应用研究人员而言,没有“一定大小的”因果方法可以在普遍上表现出色。实际上,因果方法主要根据手工制作的模拟数据进行定量评估。这样的数据产生程序可能具有有限的价值,因为它们通常是现实的风格化模型。它们被简化为障碍性,缺乏现实世界数据的复杂性。对于应用研究人员,了解方法对手头数据的表现效果很好至关重要。我们的工作介绍了基于生成模型的深层框架,以验证因果推理方法。该框架的新颖性源于其产生锚定在观察到的样品的经验分布上的合成数据的能力,因此与后者几乎没有区别。该方法使用户可以为因果效应的形式和幅度指定地面真理,并将偏见作为协变量的功能。因此,模拟数据集用于评估与观察到的样本相似的数据时,各种因果估计方法的潜在性能。我们证明了Credence在广泛的仿真研究中准确评估因果估计技术的相对性能以及来自Lalonde和Project Star研究的两个现实世界数据应用的能力。
translated by 谷歌翻译
通常使用参数模型进行经验领域的参数估计,并且此类模型很容易促进统计推断。不幸的是,它们不太可能足够灵活,无法充分建模现实现象,并可能产生偏见的估计。相反,非参数方法是灵活的,但不容易促进统计推断,并且仍然可能表现出残留的偏见。我们探索了影响功能(IFS)的潜力(a)改善初始估计器而无需更多数据(b)增加模型的鲁棒性和(c)促进统计推断。我们首先对IFS进行广泛的介绍,并提出了一种神经网络方法“ Multinet”,该方法使用单个体系结构寻求合奏的多样性。我们还介绍了我们称为“ Multistep”的IF更新步骤的变体,并对不同方法提供了全面的评估。发现这些改进是依赖数据集的,这表明所使用的方法与数据生成过程的性质之间存在相互作用。我们的实验强调了从业人员需要通过不同的估计器组合进行多次分析来检查其发现的一致性。我们还表明,可以改善“自由”的现有神经网络,而无需更多数据,而无需重新训练。
translated by 谷歌翻译
因果关系是理解世界的科学努力的基本组成部分。不幸的是,在心理学和社会科学中,因果关系仍然是禁忌。由于越来越多的建议采用因果方法进行研究的重要性,我们重新制定了心理学研究方法的典型方法,以使不可避免的因果理论与其余的研究渠道协调。我们提出了一个新的过程,该过程始于从因果发现和机器学习的融合中纳入技术的发展,验证和透明的理论形式规范。然后,我们提出将完全指定的理论模型的复杂性降低到与给定目标假设相关的基本子模型中的方法。从这里,我们确定利息量是否可以从数据中估算出来,如果是的,则建议使用半参数机器学习方法来估计因果关系。总体目标是介绍新的研究管道,该管道可以(a)促进与测试因果理论的愿望兼容的科学询问(b)鼓励我们的理论透明代表作为明确的数学对象,(c)将我们的统计模型绑定到我们的统计模型中该理论的特定属性,因此减少了理论到模型间隙通常引起的规范不足问题,以及(d)产生因果关系和可重复性的结果和估计。通过具有现实世界数据的教学示例来证明该过程,我们以摘要和讨论来结论。
translated by 谷歌翻译
因果推论在电子商务和精确医学等各个领域都有广泛的应用,其性能在很大程度上取决于对个体治疗效果(ITE)的准确估计。通常,通过在其各个样品空间中分别对处理和控制响应函数进行建模来预测ITE。但是,这种方法通常会在实践中遇到两个问题,即治疗偏见引起的治疗组和对照组之间的分布分布以及其人口规模的显着样本失衡。本文提出了深层的整个空间跨网络(DESCN),以从端到端的角度进行建模治疗效果。 DESCN通过多任务学习方式捕获了治疗倾向,反应和隐藏治疗效果的综合信息。我们的方法共同学习了整个样品空间中的治疗和反应功能,以避免治疗偏见,并采用中间伪治疗效应预测网络来减轻样品失衡。从电子商务凭证分销业务的合成数据集和大规模生产数据集进行了广泛的实验。结果表明,DESCN可以成功提高ITE估计的准确性并提高提升排名的性能。发布生产数据集和源代码的样本是为了促进社区的未来研究,据我们所知,这是首个大型公共偏见的因果推理数据集。
translated by 谷歌翻译
Estimating treatment effects from observational data is a central problem in causal inference. Methods to solve this problem exploit inductive biases and heuristics from causal inference to design multi-head neural network architectures and regularizers. In this work, we propose to use neurosymbolic program synthesis, a data-efficient, and interpretable technique, to solve the treatment effect estimation problem. We theoretically show that neurosymbolic programming can solve the treatment effect estimation problem. By designing a Domain Specific Language (DSL) for treatment effect estimation problem based on the inductive biases used in literature, we argue that neurosymbolic programming is a better alternative to treatment effect estimation than traditional methods. Our empirical study reveals that our method, which implicitly encodes inductive biases in a DSL, achieves better performance on benchmark datasets than the state-of-the-art methods.
translated by 谷歌翻译
在许多学科中,异质治疗效果(HTE)的估计至关重要,从个性化医学到经济学等等。在随机试验和观察性研究中,随机森林已被证明是一种灵活而有力的HTE估计方法。尤其是Athey,Tibshirani和Wager(2019)引入的“因果森林”,以及包装GRF中的R实施。 Seibold,Zeileis和Hothorn(2018)引入了一种称为“基于模型的森林”的相关方法,该方法旨在随机试验,并同时捕获预后和预测变量的效果,并在R包装模型中进行模块化实现。 。在这里,我们提出了一种统一的观点,它超出了理论动机,并研究了哪些计算元素使因果森林如此成功,以及如何将它们与基于模型的森林的优势融合在一起。为此,我们表明,可以通过相同的参数和L2损耗下加性模型的模型假设来理解这两种方法。这种理论上的见解使我们能够实施“基于模型的因果林”的几种口味,并在计算机中剖析其不同元素。将原始的因果森林和基于模型的森林与基准研究中的新混合版本进行了比较,该研究探讨了随机试验和观察环境。在随机设置中,两种方法都执行了AKIN。如果在数据生成过程中存在混淆,我们发现与相应倾向的治疗指标的局部核心是良好性能的主要驱动力。结果的局部核心不太重要,并且可以通过相对于预后和预测效应的同时拆分选择来代替或增强。
translated by 谷歌翻译
因果推断能够估计治疗效果(即,治疗结果的因果效果),使各个领域的决策受益。本研究中的一个基本挑战是观察数据的治疗偏见。为了提高对因果推断的观察研究的有效性,基于代表的方法作为最先进的方法表明了治疗效果估计的卓越性能。基于大多数基于表示的方法假设所有观察到的协变量都是预处理的(即,不受治疗影响的影响),并学习这些观察到的协变量的平衡表示,以估算治疗效果。不幸的是,这种假设往往在实践中往往是太严格的要求,因为一些协调因子是通过对治疗的干预进行改变(即,后治疗)来改变。相比之下,从不变的协变量中学到的平衡表示因此偏置治疗效果估计。
translated by 谷歌翻译
传统的因果推理方法利用观察性研究数据来估计潜在治疗的观察到的差异和未观察到的结果,称为条件平均治疗效果(CATE)。然而,凯特就对应于仅第一刻的比较,因此可能不足以反映治疗效果的全部情况。作为替代方案,估计全部潜在结果分布可以提供更多的见解。但是,估计治疗效果的现有方法潜在的结果分布通常对这些分布施加限制性或简单的假设。在这里,我们提出了合作因果网络(CCN),这是一种新颖的方法,它通过学习全部潜在结果分布而超出了CATE的估计。通过CCN框架估算结果分布不需要对基础数据生成过程的限制性假设。此外,CCN促进了每种可能处理的效用的估计,并允许通过效用函数进行特定的特定变异。 CCN不仅将结果估计扩展到传统的风险差异之外,而且还可以通过定义灵活的比较来实现更全面的决策过程。根据因果文献中通常做出的假设,我们表明CCN学习了渐近捕获真正潜在结果分布的分布。此外,我们提出了一种调整方法,该方法在经验上可以有效地减轻观察数据中治疗组之间的样本失衡。最后,我们评估了CCN在多个合成和半合成实验中的性能。我们证明,与现有的贝叶斯和深层生成方法相比,CCN学会了改进的分布估计值,以及对各种效用功能的改进决策。
translated by 谷歌翻译
估计平均因果效应的理想回归(如果有)是什么?我们在离散协变量的设置中研究了这个问题,从而得出了各种分层估计器的有限样本方差的表达式。这种方法阐明了许多广泛引用的结果的基本统计现象。我们的博览会结合了研究因果效应估计的三种不同的方法论传统的见解:潜在结果,因果图和具有加性误差的结构模型。
translated by 谷歌翻译
估算观察数据的个性化治疗效果(ITES)对于决策至关重要。为了获得非偏见的ITE估计,常见的假设是所有混杂因素都被观察到。然而,在实践中,我们不太可能直接观察这些混乱。相反,我们经常遵守真正的混乱的噪音测量,这可以作为有效代理。在本文中,我们解决了在观察嘈杂的代理而不是真正的混乱中估算ITE的问题。为此,我们开发了一种Deconfound Temporal AutoEncoder,这是一种利用观察到嘈杂的代理来学习反映真正隐藏的混淆的隐藏嵌入的新方法。特别地,DTA将长短期存储器自动统计器组合出具有因果正则化惩罚,该惩罚使得有条件独立于所学习的隐藏嵌入的潜在结果和治疗分配。通过DTA学习隐藏的嵌入后,最先进的结果模型可用于控制它并获得ITE的无偏见估计。使用综合性和现实世界的医疗数据,我们通过通过大幅保证金改善最先进的基准来证明我们的DTA的有效性。
translated by 谷歌翻译
本文介绍了一种创新的贝叶斯机器学习算法,在不完美的顺应性存在下绘制可解释的对异质因果效应的推断(例如,在不规则的分配机制下)。我们通过蒙特卡罗模拟显示,据提出的贝叶斯因果森林具有乐器变量(BCF-IV)方法优于在控制各方误差率的同时发现和估算异质因果效果时量身定制的其他机器学习技术(或 - 在叶子水平时,不那么严格地 - 为假发现率)。 BCF-IV揭示了乐器可变场景中因果效应的异质性,而且,又为政策制定者提供了有针对性政策的相关工具。其实证应用评估了额外资金对学生表演的影响。结果表明,BCF-IV可用于增强学校资助对学生绩效的有效性。
translated by 谷歌翻译
观察数据中估算单个治疗效果(ITE)在许多领域,例如个性化医学等领域。但是,实际上,治疗分配通常被未观察到的变量混淆,因此引入了偏见。消除偏见的一种补救措施是使用仪器变量(IVS)。此类环境在医学中广泛存在(例如,将合规性用作二进制IV的试验)。在本文中,我们提出了一个新颖的,可靠的机器学习框架,称为MRIV,用于使用二进制IV估算ITES,从而产生无偏见的ITE估计器。与以前的二进制IV的工作不同,我们的框架通过伪结果回归直接估算了ITE。 (1)我们提供了一个理论分析,我们表明我们的框架产生了多重稳定的收敛速率:即使几个滋扰估计器的收敛缓慢,我们的ITE估计器也会达到快速收敛。 (2)我们进一步表明,我们的框架渐近地优于最先进的插件IV方法,以进行ITE估计。 (3)我们以理论结果为基础,并提出了一种使用二进制IVS的ITE估算的定制的,称为MRIV-NET的深度神经网络结构。在各种计算实验中,我们从经验上证明了我们的MRIV-NET实现最先进的性能。据我们所知,我们的MRIV是第一个机器学习框架,用于估算显示出倍增功能的二进制IV设置。
translated by 谷歌翻译
Causal learning has attracted much attention in recent years because causality reveals the essential relationship between things and indicates how the world progresses. However, there are many problems and bottlenecks in traditional causal learning methods, such as high-dimensional unstructured variables, combinatorial optimization problems, unknown intervention, unobserved confounders, selection bias and estimation bias. Deep causal learning, that is, causal learning based on deep neural networks, brings new insights for addressing these problems. While many deep learning-based causal discovery and causal inference methods have been proposed, there is a lack of reviews exploring the internal mechanism of deep learning to improve causal learning. In this article, we comprehensively review how deep learning can contribute to causal learning by addressing conventional challenges from three aspects: representation, discovery, and inference. We point out that deep causal learning is important for the theoretical extension and application expansion of causal science and is also an indispensable part of general artificial intelligence. We conclude the article with a summary of open issues and potential directions for future work.
translated by 谷歌翻译