创意支持工具中的反馈可以帮助人群推动他们的意思。但是,目前的反馈方法需要从促进者或同行中进行人力评估。这不可扩展到大人群。我们提出可解释的定向多样性来自动预测观点的质量和多样性分数,并提供AI解释 - 归因,对比归因和反事实建议 - 反馈意见(低),以及如何获得更高的分数。由于用户迭代地提高其想象,这些解释提供了多面反馈。我们进行了形成性和控制的用户研究,以了解解释的使用和有用性,以提高观念多样性和质量。用户感谢解释反馈帮助重点努力,并提供了改进的方向。这导致解释与没有反馈或反馈仅具有预测的反馈和反馈相比提高了多样性。因此,我们的方法为解释和丰富的反馈开辟了可解释的AI的机会,以获得迭代人群思想和创造力支​​持工具。
translated by 谷歌翻译
自我跟踪可以提高人们对他们不健康的行为的认识,为行为改变提供见解。事先工作探索了自动跟踪器如何反映其记录数据,但它仍然不清楚他们从跟踪反馈中学到多少,以及哪些信息更有用。实际上,反馈仍然可以压倒,并简明扼要可以通过增加焦点和减少解释负担来改善学习。为了简化反馈,我们提出了一个自动跟踪反馈显着框架,以定义提供反馈的特定信息,为什么这些细节以及如何呈现它们(手动引出或自动反馈)。我们从移动食品跟踪的实地研究中收集了调查和膳食图像数据,并实施了Salientrack,一种机器学习模型,以预测用户从跟踪事件中学习。使用可解释的AI(XAI)技术,SalientRack识别该事件的哪些特征是最突出的,为什么它们导致正面学习结果,并优先考虑如何根据归属分数呈现反馈。我们展示了用例,并进行了形成性研究,以展示Salientrack的可用性和有用性。我们讨论自动跟踪中可读性的影响,以及如何添加模型解释性扩大了提高反馈体验的机会。
translated by 谷歌翻译
机器学习模型需要提供对比解释,因为人们经常寻求理解为什么发生令人费解的预测而不是一些预期的结果。目前的对比解释是实例或原始特征之间的基本比较,这仍然难以解释,因为它们缺乏语义含义。我们认为解释必须与其他概念,假设和协会更加相关。受到认知心理学的感知过程的启发,我们提出了具有对比显着性,反事实合成和对比提示的可靠可解释的AI的XAI感知处理框架和REXNET模型。我们调查了声乐情绪识别的应用,实施了模块化的多任务深度神经网络,以预测言论的情感。从思想和对照研究来看,我们发现,反事实解释是有用的,并进一步增强了语义线索,但不具有显着性解释。这项工作为提供和评估了感知应用提供了可关联的对比解释的AI,提供了深度识别。
translated by 谷歌翻译
Explainable AI (XAI) is widely viewed as a sine qua non for ever-expanding AI research. A better understanding of the needs of XAI users, as well as human-centered evaluations of explainable models are both a necessity and a challenge. In this paper, we explore how HCI and AI researchers conduct user studies in XAI applications based on a systematic literature review. After identifying and thoroughly analyzing 85 core papers with human-based XAI evaluations over the past five years, we categorize them along the measured characteristics of explanatory methods, namely trust, understanding, fairness, usability, and human-AI team performance. Our research shows that XAI is spreading more rapidly in certain application domains, such as recommender systems than in others, but that user evaluations are still rather sparse and incorporate hardly any insights from cognitive or social sciences. Based on a comprehensive discussion of best practices, i.e., common models, design choices, and measures in user studies, we propose practical guidelines on designing and conducting user studies for XAI researchers and practitioners. Lastly, this survey also highlights several open research directions, particularly linking psychological science and human-centered XAI.
translated by 谷歌翻译
Many real-world applications of language models (LMs), such as code autocomplete and writing assistance, involve human-LM interaction, but the main LM benchmarks are non-interactive, where a system produces output without human intervention. To evaluate human-LM interaction, we develop a framework, Human-AI Language-based Interaction Evaluation (H-LINE), that expands non-interactive evaluation along three dimensions, capturing (i) the interactive process, not only the final output; (ii) the first-person subjective experience, not just a third-party assessment; and (iii) notions of preference beyond quality. We then design five tasks ranging from goal-oriented to open-ended to capture different forms of interaction. On four state-of-the-art LMs (three variants of OpenAI's GPT-3 and AI21's J1-Jumbo), we find that non-interactive performance does not always result in better human-LM interaction and that first-person and third-party metrics can diverge, suggesting the importance of examining the nuances of human-LM interaction.
translated by 谷歌翻译
我们提出了一项探索性定性研究,以了解作家如何与下一页建议相互作用。尽管对建议系统对写作的影响进行了一些定量研究,但几乎没有定性的工作来理解作家如何与建议系统互动及其如何影响他们的写作过程 - 特别是针对非本地但英国作家的。我们进行了一项研究,要求业余作家分别写两部电影评论,一本没有建议。我们发现作家以各种复杂的方式与下一页建议互动 - 作家能够抽象建议的多个部分并将其纳入他们的写作中 - 即使他们不同意整个建议。建议系统对写作过程也有各种影响 - 以独特的方式为写作过程的不同方面做出了影响。我们提出了一种用于与GPT-2写作的作家 - 探索互动模型,用于电影评论写作任务,然后是该模型可用于未来研究的方式,并概述了研究和设计的机会。
translated by 谷歌翻译
Prior work has identified a resilient phenomenon that threatens the performance of human-AI decision-making teams: overreliance, when people agree with an AI, even when it is incorrect. Surprisingly, overreliance does not reduce when the AI produces explanations for its predictions, compared to only providing predictions. Some have argued that overreliance results from cognitive biases or uncalibrated trust, attributing overreliance to an inevitability of human cognition. By contrast, our paper argues that people strategically choose whether or not to engage with an AI explanation, demonstrating empirically that there are scenarios where AI explanations reduce overreliance. To achieve this, we formalize this strategic choice in a cost-benefit framework, where the costs and benefits of engaging with the task are weighed against the costs and benefits of relying on the AI. We manipulate the costs and benefits in a maze task, where participants collaborate with a simulated AI to find the exit of a maze. Through 5 studies (N = 731), we find that costs such as task difficulty (Study 1), explanation difficulty (Study 2, 3), and benefits such as monetary compensation (Study 4) affect overreliance. Finally, Study 5 adapts the Cognitive Effort Discounting paradigm to quantify the utility of different explanations, providing further support for our framework. Our results suggest that some of the null effects found in literature could be due in part to the explanation not sufficiently reducing the costs of verifying the AI's prediction.
translated by 谷歌翻译
Incivility remains a major challenge for online discussion platforms, to such an extent that even conversations between well-intentioned users can often derail into uncivil behavior. Traditionally, platforms have relied on moderators to -- with or without algorithmic assistance -- take corrective actions such as removing comments or banning users. In this work we propose a complementary paradigm that directly empowers users by proactively enhancing their awareness about existing tension in the conversation they are engaging in and actively guides them as they are drafting their replies to avoid further escalation. As a proof of concept for this paradigm, we design an algorithmic tool that provides such proactive information directly to users, and conduct a user study in a popular discussion platform. Through a mixed methods approach combining surveys with a randomized controlled experiment, we uncover qualitative and quantitative insights regarding how the participants utilize and react to this information. Most participants report finding this proactive paradigm valuable, noting that it helps them to identify tension that they may have otherwise missed and prompts them to further reflect on their own replies and to revise them. These effects are corroborated by a comparison of how the participants draft their reply when our tool warns them that their conversation is at risk of derailing into uncivil behavior versus in a control condition where the tool is disabled. These preliminary findings highlight the potential of this user-centered paradigm and point to concrete directions for future implementations.
translated by 谷歌翻译
神经语言模型有可能支持人类写作。但是,关于其整合和对写作和产出的影响仍然存在问题。为了解决这个问题,我们设计并比较了两个用于写作的用户界面与移动设备上的AI,这些用户界面操纵主动性和控制级别:1)使用连续生成的文本编写,AI添加了逐字文字和用户转向。 2)编写建议,AI建议短语和用户从列表中选择。在监督的在线研究(n = 18)中,参与者使用了这些原型和无AI的基线。我们收集了触摸互动,关于灵感和作者的评分以及访谈数据。有了AI的建议,人们的写作不那么积极,但觉得他们是作者。连续生成的文本减少了这种感知的作者身份,但编辑行为增加了。在这两种设计中,AI都会增加文本长度,并被认为会影响措辞。我们的发现为UI设计决策对用户体验和共同创造系统的产出的影响增加了新的经验证据。
translated by 谷歌翻译
随着AI系统表现出越来越强烈的预测性能,它们的采用已经在许多域中种植。然而,在刑事司法和医疗保健等高赌场域中,由于安全,道德和法律问题,往往是完全自动化的,但是完全手工方法可能是不准确和耗时的。因此,对研究界的兴趣日益增长,以增加人力决策。除了为此目的开发AI技术之外,人民AI决策的新兴领域必须采用实证方法,以形成对人类如何互动和与AI合作做出决定的基础知识。为了邀请和帮助结构研究努力了解理解和改善人为 - AI决策的研究,我们近期对本课题的实证人体研究的文献。我们总结了在三个重要方面的100多篇论文中的研究设计选择:(1)决定任务,(2)AI模型和AI援助要素,以及(3)评估指标。对于每个方面,我们总结了当前的趋势,讨论了现场当前做法中的差距,并列出了未来研究的建议。我们的调查强调了开发共同框架的需要考虑人类 - AI决策的设计和研究空间,因此研究人员可以在研究设计中进行严格的选择,研究界可以互相构建并产生更广泛的科学知识。我们还希望这项调查将成为HCI和AI社区的桥梁,共同努力,相互塑造人类决策的经验科学和计算技术。
translated by 谷歌翻译
尽管可解释的AI的大量研究重点是产生有效的解释,但较少的工作致力于人们如何理解和解释解释的问题。在这项工作中,我们通过研究基于显着性数据的解释来关注这个问题。文本模型的特征属性解释旨在传达输入文本的哪些部分比其他部分更具影响力。许多当前的解释方法,例如基于梯度或基于沙普利价值的方法,都提供了重要的衡量标准,这些方法在数学上是众所周知的。但是,一个人接受解释(解释)如何理解它?他们的理解是否与解释试图交流的内容相匹配?我们从经验上研究了输入的各种因素,特征 - 贡献解释和可视化程序对Laypeople对解释的解释的影响。我们询问人群工人对英语和德语的任务进行解释,并根据感兴趣的因素适合他们的回答。我们发现人们经常误解解释:尽管有直接传达重要性的解释,但肤浅和无关的因素(例如单词长度)影响了解释者的重要性分配。然后,我们证明其中一些失真可以减弱:我们提出了一种基于过度感受和低估的模型估计的方法来调整销售的方法,并探索条形图作为热图显着性可视化的替代方法。我们发现两种方法都可以减轻特定因素的扭曲作用,从而使对解释的理解更好地理解。
translated by 谷歌翻译
There has been a recent resurgence in the area of explainable artificial intelligence as researchers and practitioners seek to make their algorithms more understandable. Much of this research is focused on explicitly explaining decisions or actions to a human observer, and it should not be controversial to say that looking at how humans explain to each other can serve as a useful starting point for explanation in artificial intelligence. However, it is fair to say that most work in explainable artificial intelligence uses only the researchers' intuition of what constitutes a 'good' explanation. There exists vast and valuable bodies of research in philosophy, psychology, and cognitive science of how people define, generate, select, evaluate, and present explanations, which argues that people employ certain cognitive biases and social expectations towards the explanation process. This paper argues that the field of explainable artificial intelligence should build on this existing research, and reviews relevant papers from philosophy, cognitive psychology/science, and social psychology, which study these topics. It draws out some important findings, and discusses ways that these can be infused with work on explainable artificial intelligence.
translated by 谷歌翻译
人为决策的合作努力实现超出人类或人工智能表现的团队绩效。但是,许多因素都会影响人类团队的成功,包括用户的领域专业知识,AI系统的心理模型,对建议的信任等等。这项工作检查了用户与三种模拟算法模型的互动,所有这些模型都具有相似的精度,但对其真正的正面和真实负率进行了不同的调整。我们的研究检查了在非平凡的血管标签任务中的用户性能,参与者表明给定的血管是流动还是停滞。我们的结果表明,虽然AI-Assistant的建议可以帮助用户决策,但用户相对于AI的基线性能和AI错误类型的补充调整等因素会显着影响整体团队的整体绩效。新手用户有所改善,但不能达到AI的准确性。高度熟练的用户通常能够识别何时应遵循AI建议,并通常保持或提高其性能。与AI相似的准确性水平的表演者在AI建议方面是最大的变化。此外,我们发现用户对AI的性能亲戚的看法也对给出AI建议时的准确性是否有所提高产生重大影响。这项工作提供了有关与人类协作有关的因素的复杂性的见解,并提供了有关如何开发以人为中心的AI算法来补充用户在决策任务中的建议。
translated by 谷歌翻译
近年来,人们对可解释的AI(XAI)领域的兴趣激增,文献中提出了很多算法。但是,关于如何评估XAI的共识缺乏共识阻碍了该领域的发展。我们强调说,XAI并不是一组整体技术 - 研究人员和从业人员已经开始利用XAI算法来构建服务于不同使用环境的XAI系统,例如模型调试和决策支持。然而,对XAI的算法研究通常不会考虑到这些多样化的下游使用环境,从而对实际用户产生有限的有效性甚至意想不到的后果,以及从业者做出技术选择的困难。我们认为,缩小差距的一种方法是开发评估方法,这些方法在这些用法上下文中说明了不同的用户需求。为了实现这一目标,我们通过考虑XAI评估标准对XAI的原型用法上下文的相对重要性,介绍了情境化XAI评估的观点。为了探索XAI评估标准的上下文依赖性,我们进行了两项调查研究,一项与XAI主题专家,另一项与人群工人进行。我们的结果敦促通过使用使用的评估实践进行负责任的AI研究,并在不同使用环境中对XAI的用户需求有细微的了解。
translated by 谷歌翻译
我们提出了一个文本编辑器,以帮助用户计划,结构并反思其写作过程。它使用自动文本摘要提供了不断更新的段落摘要作为边缘注释。摘要级别范围从全文到选定的(中央)句子,一直到关键字的集合。为了了解用户在写作过程中如何与该系统进行交互,我们进行了两项用户研究(n = 4和n = 8),人们在其中写了有关给定主题和文章的分析文章。作为关键发现,这些摘要使用户对他们的写作有了外部视角,并帮助他们修改了草稿段落的内容和范围。人们进一步使用该工具快速获得文本概述,并制定了整合自动摘要中见解的策略。从更广泛的角度来看,这项工作探索并突出了为作家设计AI工具的价值,其自然语言处理(NLP)功能超出了直接文本生成和更正。
translated by 谷歌翻译
情绪分析中最突出的任务是为文本分配情绪,并了解情绪如何在语言中表现出来。自然语言处理的一个重要观察结果是,即使没有明确提及情感名称,也可以通过单独参考事件来隐式传达情绪。在心理学中,被称为评估理论的情感理论类别旨在解释事件与情感之间的联系。评估可以被形式化为变量,通过他们认为相关的事件的人们的认知评估来衡量认知评估。其中包括评估事件是否是新颖的,如果该人认为自己负责,是否与自己的目标以及许多其他人保持一致。这样的评估解释了哪些情绪是基于事件开发的,例如,新颖的情况会引起惊喜或不确定后果的人可能引起恐惧。我们在文本中分析了评估理论对情绪分析的适用性,目的是理解注释者是否可以可靠地重建评估概念,如果可以通过文本分类器预测,以及评估概念是否有助于识别情感类别。为了实现这一目标,我们通过要求人们发短信描述触发特定情绪并披露其评估的事件来编译语料库。然后,我们要求读者重建文本中的情感和评估。这种设置使我们能够衡量是否可以纯粹从文本中恢复情绪和评估,并为判断模型的绩效指标提供人体基准。我们将文本分类方法与人类注释者的比较表明,两者都可以可靠地检测出具有相似性能的情绪和评估。我们进一步表明,评估概念改善了文本中情绪的分类。
translated by 谷歌翻译
自动摘要方法是有效的,但可能患有低质量。相比之下,手动摘要很昂贵,但质量更高。人类和人工智能可以协作以提高总结性能吗?在类似的文本生成任务(例如机器翻译)中,人类AI合作的形式是“后编辑” AI生成的文本,可减少人类的工作量并提高AI输出的质量。因此,我们探讨了邮政编辑是否提供文本摘要中的优势。具体来说,我们对72名参与者进行了实验,将提供的后编辑摘要与手动摘要进行了摘要,以摘要质量,人为效率和用户在正式新闻(XSUM新闻)和非正式(REDDIT帖子)文本方面进行了比较。这项研究对何时编辑的文本摘要提供了宝贵的见解:在某些情况下(例如,何时参与者缺乏领域知识),但在其他情况下却没有帮助(例如,何时提供的摘要包括不准确的信息)。参与者的不同编辑策略和援助需求为未来的人类摘要系统提供了影响。
translated by 谷歌翻译
过去十年已经看到人工智能(AI)的显着进展,这导致了用于解决各种问题的算法。然而,通过增加模型复杂性并采用缺乏透明度的黑匣子AI模型来满足这种成功。为了响应这种需求,已经提出了说明的AI(Xai)以使AI更透明,从而提高关键结构域中的AI。虽然有几个关于Xai主题的Xai主题的评论,但在Xai中发现了挑战和潜在的研究方向,这些挑战和研究方向被分散。因此,本研究为Xai组织的挑战和未来的研究方向提出了系统的挑战和未来研究方向:(1)基于机器学习生命周期的Xai挑战和研究方向,基于机器的挑战和研究方向阶段:设计,开发和部署。我们认为,我们的META调查通过为XAI地区的未来探索指导提供了XAI文学。
translated by 谷歌翻译
随着近期自然语言生成(NLG)模型的各种应用程序的改进,它变得必须具有识别和评估NLG输出是否仅共享关于外部世界的可验证信息的手段。在这项工作中,我们提出了一个归属于识别的来源(AIS)的新评估框架,用于评估自然语言生成模型的输出,当这种输出涉及外部世界时。我们首先定义AIS,并引入两级注释管道,用于允许注释器根据AIS指南适当地评估模型输出。通过人为评估研究,我们在三个代数据集(会话QA域中的两个中和总结一下,概括地验证了这种方法,表明AIS可以作为测量模型生成的语句是否支持基础来源的常见框架。我们释放人类评估研究指南。
translated by 谷歌翻译
As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically generate evaluations with LMs. We explore approaches with varying amounts of human effort, from instructing LMs to write yes/no questions to making complex Winogender schemas with multiple stages of LM-based generation and filtering. Crowdworkers rate the examples as highly relevant and agree with 90-100% of labels, sometimes more so than corresponding human-written datasets. We generate 154 datasets and discover new cases of inverse scaling where LMs get worse with size. Larger LMs repeat back a dialog user's preferred answer ("sycophancy") and express greater desire to pursue concerning goals like resource acquisition and goal preservation. We also find some of the first examples of inverse scaling in RL from Human Feedback (RLHF), where more RLHF makes LMs worse. For example, RLHF makes LMs express stronger political views (on gun rights and immigration) and a greater desire to avoid shut down. Overall, LM-written evaluations are high-quality and let us quickly discover many novel LM behaviors.
translated by 谷歌翻译