Multilingual models are often particularly dependent on scaling to generalize to a growing number of languages. Compression techniques are widely relied upon to reconcile the growth in model size with real world resource constraints, but compression can have a disparate effect on model performance for low-resource languages. It is thus crucial to understand the trade-offs between scale, multilingualism, and compression. In this work, we propose an experimental framework to characterize the impact of sparsifying multilingual pre-trained language models during fine-tuning. Applying this framework to mBERT named entity recognition models across 40 languages, we find that compression confers several intriguing and previously unknown generalization properties. In contrast to prior findings, we find that compression may improve model robustness over dense models. We additionally observe that under certain sparsification regimes compression may aid, rather than disproportionately impact the performance of low-resource languages.
translated by 谷歌翻译
Much recent progress in applications of machine learning models to NLP has been driven by benchmarks that evaluate models across a wide variety of tasks. However, these broad-coverage benchmarks have been mostly limited to English, and despite an increasing interest in multilingual models, a benchmark that enables the comprehensive evaluation of such methods on a diverse range of languages and tasks is still missing. To this end, we introduce the Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark, a multi-task benchmark for evaluating the cross-lingual generalization capabilities of multilingual representations across 40 languages and 9 tasks. We demonstrate that while models tested on English reach human performance on many tasks, there is still a sizable gap in the performance of cross-lingually transferred models, particularly on syntactic and sentence retrieval tasks. There is also a wide spread of results across languages. We release the benchmark 1 to encourage research on cross-lingual learning methods that transfer linguistic knowledge across a diverse and representative set of languages and tasks.
translated by 谷歌翻译
We present, Naamapadam, the largest publicly available Named Entity Recognition (NER) dataset for the 11 major Indian languages from two language families. In each language, it contains more than 400k sentences annotated with a total of at least 100k entities from three standard entity categories (Person, Location and Organization) for 9 out of the 11 languages. The training dataset has been automatically created from the Samanantar parallel corpus by projecting automatically tagged entities from an English sentence to the corresponding Indian language sentence. We also create manually annotated testsets for 8 languages containing approximately 1000 sentences per language. We demonstrate the utility of the obtained dataset on existing testsets and the Naamapadam-test data for 8 Indic languages. We also release IndicNER, a multilingual mBERT model fine-tuned on the Naamapadam training set. IndicNER achieves the best F1 on the Naamapadam-test set compared to an mBERT model fine-tuned on existing datasets. IndicNER achieves an F1 score of more than 80 for 7 out of 11 Indic languages. The dataset and models are available under open-source licenses at https://ai4bharat.iitm.ac.in/naamapadam.
translated by 谷歌翻译
Recently, very large pre-trained models achieve state-of-the-art results in various natural language processing (NLP) tasks, but their size makes it more challenging to apply them in resource-constrained environments. Compression techniques allow to drastically reduce the size of the models and therefore their inference time with negligible impact on top-tier metrics. However, the general performance averaged across multiple tasks and/or languages may hide a drastic performance drop on under-represented features, which could result in the amplification of biases encoded by the models. In this work, we assess the impact of compression methods on Multilingual Neural Machine Translation models (MNMT) for various language groups, gender, and semantic biases by extensive analysis of compressed models on different machine translation benchmarks, i.e. FLORES-101, MT-Gender, and DiBiMT. We show that the performance of under-represented languages drops significantly, while the average BLEU metric only slightly decreases. Interestingly, the removal of noisy memorization with compression leads to a significant improvement for some medium-resource languages. Finally, we demonstrate that compression amplifies intrinsic gender and semantic biases, even in high-resource languages. Code: https://github.com/alirezamshi/bias-compressedMT
translated by 谷歌翻译
多语言预训练的语言模型(PLM)在高资源和低资源语言的下游任务上表现出令人印象深刻的表现。但是,在预培训期间,尤其是非洲语言中,看不见的语言仍然有很大的表现。适应新语言的最有效方法之一是\ textit {语言自适应微调}(LAFT) - 使用预训练目标对单语言的多语言PLM进行微调。但是,适应目标语言会单独使用大磁盘空间,并限制了由此产生的模型的跨语言转移能力,因为它们已经专门用于单语言。在本文中,我们对17种最重要的非洲语言和其他三种在非洲大陆上广泛使用的高资源语言对17种最具资源的非洲语言进行\ Textit {多语言自适应微调},以鼓励跨语性转移学习。为了进一步专注于多语言PLM,我们从嵌入式层中删除了与MAFT之前的非非洲写作脚本相对应的词汇令牌,从而将模型大小降低了约50%。我们对两个多语言PLM(Afriberta和XLM-R)和三个NLP任务(NER,新闻主题分类和情感分类)的评估表明,我们的方法可以在单个语言上应用LAFT,同时需要较小的磁盘空间。此外,我们表明我们的适应性PLM还提高了参数有效微调方法的零击跨语性转移能力。
translated by 谷歌翻译
Providing better language tools for low-resource and endangered languages is imperative for equitable growth. Recent progress with massively multilingual pretrained models has proven surprisingly effective at performing zero-shot transfer to a wide variety of languages. However, this transfer is not universal, with many languages not currently understood by multilingual approaches. It is estimated that only 72 languages possess a "small set of labeled datasets" on which we could test a model's performance, the vast majority of languages not having the resources available to simply evaluate performances on. In this work, we attempt to clarify which languages do and do not currently benefit from such transfer. To that end, we develop a general approach that requires only unlabelled text to detect which languages are not well understood by a cross-lingual model. Our approach is derived from the hypothesis that if a model's understanding is insensitive to perturbations to text in a language, it is likely to have a limited understanding of that language. We construct a cross-lingual sentence similarity task to evaluate our approach empirically on 350, primarily low-resource, languages.
translated by 谷歌翻译
对于许多任务,基于变压器的体系结构已经实现了最新的结果,从而导致实践从使用特定于任务的架构到预先训练的语言模型的微调。持续的趋势包括具有越来越多的数据和参数的培训模型,这需要大量资源。它导致了强有力的搜索,以提高基于仅针对英语评估的算法和硬件改进的算法和硬件改进。这引发了有关其可用性的疑问,当应用于小规模的学习问题时,对于资源不足的语言任务,有限的培训数据可用。缺乏适当尺寸的语料库是应用数据驱动和转移学习的方法的障碍。在本文中,我们建立了致力于基于变压器模型的可用性的最新努力,并建议评估这些改进的法语表现,而法语的效果很少。我们通过通过数据增强,超参数优化和跨语性转移来调查各种培训策略来解决与数据稀缺有关的不稳定。我们还为法国弗拉伯特(Fralbert)引入了一种新的紧凑型模型,该模型在低资源环境中被证明具有竞争力。
translated by 谷歌翻译
多语言预训练的语言模型在跨语言任务上表现出了令人印象深刻的表现。它极大地促进了自然语言处理在低资源语言上的应用。但是,当前的多语言模型仍然有些语言表现不佳。在本文中,我们提出了Cino(中国少数族裔训练的语言模型),这是一种用于中国少数语言的多语言预训练的语言模型。它涵盖了标准的中文,Yue中文和其他六种少数民族语言。为了评估多语言模型在少数族裔语言上的跨语性能力,我们从Wikipedia和新闻网站收集文档,并构建两个文本分类数据集,WCM(Wiki-Chinese-Minority)和CMNEWS(中国最少的新闻)。我们表明,Cino在各种分类任务上的表现明显优于基准。Cino模型和数据集可在http://cino.hfl-rc.com上公开获得。
translated by 谷歌翻译
虽然对多语言视觉语言预测的模型实现了一些好处,但是当将多句预训练的视力语言模型应用于非英语数据时,各种任务和语言的最新基准测试表明,跨语性概括不佳,并且在有监督之间存在很大的差距( )英语表现和(零射)跨语性转移。在这项工作中,我们探讨了这些模型在零拍的跨语性视觉响应(VQA)任务上的糟糕性能,其中模型在英语视觉问题数据上进行了微调,并对7种类型上多样的语言进行了评估。我们通过三种策略改善了跨语性转移:(1)我们引入了语言的先验目标,以增加基于相似性损失以指导模型在培训期间的跨渗透损失,(2)我们学习了一个特定于任务的子网络,改善跨语性概括并减少不修改模型的方差,(3)我们使用合成代码混合来扩大培训示例,以促进源和目标语言之间的嵌入。我们使用预审计的多语言多模式变压器UC2和M3P进行的XGQA实验证明了针对7种语言提出的微调策略的一致有效性,以稀疏模型优于现有的转移方法。复制我们发现的代码和数据已公开可用。
translated by 谷歌翻译
In this work, we introduce IndicXTREME, a benchmark consisting of nine diverse tasks covering 18 languages from the Indic sub-continent belonging to four different families. Across languages and tasks, IndicXTREME contains a total of 103 evaluation sets, of which 51 are new contributions to the literature. To maintain high quality, we only use human annotators to curate or translate\footnote{for IndicXParaphrase, where an automatic translation system is used, a second human verification and correction step is done.} our datasets. To the best of our knowledge, this is the first effort toward creating a standard benchmark for Indic languages that aims to test the zero-shot capabilities of pretrained language models. We also release IndicCorp v2, an updated and much larger version of IndicCorp that contains 20.9 billion tokens in 24 languages. We pretrain IndicBERT v2 on IndicCorp v2 and evaluate it on IndicXTREME to show that it outperforms existing multilingual language models such as XLM-R and MuRIL.
translated by 谷歌翻译
多语种预训练模型在许多多语言NLP任务中展示了它们的有效性,并使从高资源语言到低资源的零射击或几秒钟传输。然而,由于某种语言之间的显着的类型差异和矛盾,这些模型通常在许多语言和交叉语言设置上表现不佳,这表明了学习单一模型同时处理大规模不同语言的难度。为了减轻这个问题,我们提出了一个新的多语言预训练管道。我们建议从多语言预先训练的模型产生语言表示,并进行语言分析,以表明语言表示相似度反映了从多个角度来看的语言相似度,包括语言家庭,地理蓝星,词汇表演和语法。然后,我们将所有目标语言集成到多个组中,并将每个组名称为表示SprachBund。因此,在同一表示SprachBund中的语言应该在培训和微调中互相提升,因为它们共享丰富的语言相似性。我们预先列车为每个代表斯普拉克班达一个多语言模型。实验在交叉基准上进行,与强基线相比,实现了显着的改进。
translated by 谷歌翻译
多语言语言模型(\ mllms),如mbert,xlm,xlm-r,\ textit {etc。}已成为一种可行的选择,使预先估计到大量语言的力量。鉴于他们的成功在零射击转移学习中,在(i)建立更大的\ mllms〜覆盖了大量语言(ii)创建覆盖更广泛的任务和语言来评估的详尽工作基准mllms〜(iii)分析单音零点,零拍摄交叉和双语任务(iv)对Monolingual的性能,了解\ mllms〜(v)增强(通常)学习的通用语言模式(如果有的话)有限的容量\ mllms〜以提高他们在已见甚至看不见语言的表现。在这项调查中,我们审查了现有的文学,涵盖了上述与\ MLLMS有关的广泛研究领域。根据我们的调查,我们建议您有一些未来的研究方向。
translated by 谷歌翻译
临床表型可以从患者记录中自动提取临床状况,这可能对全球医生和诊所有益。但是,当前的最新模型主要适用于用英语编写的临床笔记。因此,我们研究了跨语化知识转移策略,以针对不使用英语并且有少量可用数据的诊所执行此任务。我们评估了希腊和西班牙诊所的这些策略,利用来自心脏病学,肿瘤学和ICU等不同临床领域的临床笔记。我们的结果揭示了两种策略,这些策略优于最先进的方法:基于翻译的方法,结合了域的编码器和跨语性编码器以及适配器。我们发现,这些策略在对稀有表型进行分类方面表现特别好,我们建议在哪种情况下更喜欢哪种方法。我们的结果表明,使用多语言数据总体可以改善临床表型模型,并可以补偿数据稀疏性。
translated by 谷歌翻译
神经网络修剪可以有效地用于压缩自动语音识别(ASR)模型。但是,在多语言ASR中,执行语言不足的修剪可能会导致某些语言的严重性能降解,因为语言 - 敏捷的修剪口罩可能不符合所有语言,并丢弃了重要的语言特定参数。在这项工作中,我们提出了ASR路径,这是一种稀疏的多语言ASR模型,该模型激活了特定语言的子网络(“路径”),从而明确地学习了每种语言的参数。通过重叠的子网络,共享参数还可以通过联合多语言培训来实现较低资源语言的知识传输。我们提出了一种新型算法来学习ASR途径,并通过流式RNN-T模型评估了4种语言的建议方法。我们提出的ASR途径的表现都优于密集模型(平均-5.0%)和语言不足的修剪模型(平均-21.4%),并且与单语稀疏模型相比,低资源语言的性能更好。
translated by 谷歌翻译
预处理的多语言上下文表示表现出了巨大的成功,但是由于其预处理数据的限制,其好处并不适用于所有语言品种。这给这些模型不熟悉的语言品种带来了挑战,这些模型的标签\ emph {和未标记的}数据太限制了无法有效训练单语模型。我们建议使用其他特定于语言的预审进和词汇增强,以使多语言模型适应低资源设置。使用依赖性解析四种不同的低资源语言品种作为案例研究,我们表明,这些方法显着改善了基准的性能,尤其是在最低的资源案例中,并证明了此类模型的数据和目标之间关系的重要性语言品种。
translated by 谷歌翻译
Leveraging shared learning through Massively Multilingual Models, state-of-the-art machine translation models are often able to adapt to the paucity of data for low-resource languages. However, this performance comes at the cost of significantly bloated models which are not practically deployable. Knowledge Distillation is one popular technique to develop competitive, lightweight models: In this work, we first evaluate its use to compress MT models focusing on languages with extremely limited training data. Through our analysis across 8 languages, we find that the variance in the performance of the distilled models due to their dependence on priors including the amount of synthetic data used for distillation, the student architecture, training hyperparameters and confidence of the teacher models, makes distillation a brittle compression mechanism. To mitigate this, we explore the use of post-training quantization for the compression of these models. Here, we find that while distillation provides gains across some low-resource languages, quantization provides more consistent performance trends for the entire range of languages, especially the lowest-resource languages in our target set.
translated by 谷歌翻译
虽然审慎的语言模型(PLM)主要用作通用文本编码器,可以对各种下游任务进行微调,但最近的工作表明它们也可以重新连接以产生高质量的单词表示(即静态单词)嵌入)并在类型级词汇任务中产生良好的性能。虽然现有的工作主要集中在单语和双语环境中PLM的词汇专业化,但在这项工作中,我们将大规模多语言变压器(例如MMTS,例如Mbert或XLM-R)公开,以此为大规模的多语言词法知识,并利用Babelnet作为易于获得的丰富来源。多语言和跨语性类型级词汇知识。具体来说,我们利用Babelnet的多语言合成器来创建$ 50 $语言的同义词对,然后对MMTS(Mbert和XLM-R)进行对比目标指导的词汇专业化程序。我们表明,如此庞大的多语言词汇专业化为两项标准的跨语性词汇任务,双语词典感应和跨语性单词相似性以及跨语性句子检索带来了巨大的收益。至关重要的是,我们观察到在专业化中看不见的语言的收益,表明多语言词汇专业化使得概括无词法约束。在一系列随后的受控实验中,我们证明了MMT对专业化语言中单词表示的预处理质量对性能的影响要比一组约束集的语言多样性更大。令人鼓舞的是,这表明涉及低资源语言的词汇任务从资源丰富的语言的词汇知识中受益最大,通常更多。
translated by 谷歌翻译
Event Extraction (EE) is one of the fundamental tasks in Information Extraction (IE) that aims to recognize event mentions and their arguments (i.e., participants) from text. Due to its importance, extensive methods and resources have been developed for Event Extraction. However, one limitation of current research for EE involves the under-exploration for non-English languages in which the lack of high-quality multilingual EE datasets for model training and evaluation has been the main hindrance. To address this limitation, we propose a novel Multilingual Event Extraction dataset (MEE) that provides annotation for more than 50K event mentions in 8 typologically different languages. MEE comprehensively annotates data for entity mentions, event triggers and event arguments. We conduct extensive experiments on the proposed dataset to reveal challenges and opportunities for multilingual EE.
translated by 谷歌翻译
最近的工作表明,通过多语种伯爵(MBENT)获得的知识有两个组件:特定于语言和语言中立的。本文分析了它们之间的关系,在两项任务的微调 - POS标记和自然语言推理的背景下 - 需要模型带来不同的语言特异性知识。可视化揭示MBERT失去了在微调后通过语言进行群集表示的能力,这是通过语言识别实验的证据支持的结果。然而,显示使用梯度逆转和迭代对抗性学习的“无学习”语言特定表示的进一步实验,不会在微调的效果之外增加对独立于语言无关的组件的进一步改进。此处提出的结果表明,微调的过程导致模型的重组有限的代表能力,以特定于语言特定的代表性的语言无关的表示。
translated by 谷歌翻译
Translating training data into many languages has emerged as a practical solution for improving cross-lingual transfer. For tasks that involve span-level annotations, such as information extraction or question answering, an additional label projection step is required to map annotated spans onto the translated texts. Recently, a few efforts have utilized a simple mark-then-translate method to jointly perform translation and projection by inserting special markers around the labeled spans in the original sentence. However, as far as we are aware, no empirical analysis has been conducted on how this approach compares to traditional annotation projection based on word alignment. In this paper, we present an extensive empirical study across 42 languages and three tasks (QA, NER, and Event Extraction) to evaluate the effectiveness and limitations of both methods, filling an important gap in the literature. Experimental results show that our optimized version of mark-then-translate, which we call EasyProject, is easily applied to many languages and works surprisingly well, outperforming the more complex word alignment-based methods. We analyze several key factors that affect end-task performance, and show EasyProject works well because it can accurately preserve label span boundaries after translation. We will publicly release all our code and data.
translated by 谷歌翻译