图形神经网络(GNNS)在包括田野医学成像和网络神经科学在内的各个领域都取得了非凡的增强,在诊断自闭症等挑战性神经系统疾病方面,它们表现出很高的准确性。面对医学数据稀缺性和高度私人性,培训此类渴望数据的模型仍然具有挑战性。联合学习通过允许在多个数据集上培训模型,以完全保存数据的方式来独立收集,从而为该问题提供了有效的解决方案。尽管最先进的GNN和联合学习技术都侧重于提高分类准确性,但它们忽略了一个关键的未解决问题:研究GNN模型中最歧视性生物标志物(即功能)的可重复性(即功能),在联合学习范式中选择。量化预测医学模型的可重复性,以防止培训和测试数据分布的扰动,这是克服转化临床应用时要克服的最大障碍之一。据我们所知,这介绍了第一批研究联合GNN模型的可重复性,并应用了对医学成像和大脑连接数据集进行分类的应用。我们使用对医学成像和连接数据集训练的各种GNN模型评估了我们的框架。更重要的是,我们表明联邦学习可以提高GNN模型在此类医学学习任务中的准确性和可重复性。我们的源代码可在https://github.com/basiralab/reproduciblefedgnn上获得。
translated by 谷歌翻译
无创医学神经影像学已经对大脑连通性产生了许多发现。开发了几种实质技术绘制形态,结构和功能性脑连接性,以创建人脑中神经元活动的全面路线图。依靠其非欧国人数据类型,图形神经网络(GNN)提供了一种学习深图结构的巧妙方法,并且它正在迅速成为最先进的方法,从而导致各种网络神经科学任务的性能增强。在这里,我们回顾了当前基于GNN的方法,突出了它们在与脑图有关的几种应用中使用的方式,例如缺失的脑图合成和疾病分类。最后,我们通过绘制了通往网络神经科学领域中更好地应用GNN模型在神经系统障碍诊断和人群图整合中的路径。我们工作中引用的论文列表可在https://github.com/basiralab/gnns-inns-intwork-neuroscience上找到。
translated by 谷歌翻译
训练单次学习模型的核心挑战是数据空间可用镜头的有限代表性。特别是在网络神经科学领域,大脑被表示为图,这种模型在对大脑状态进行分类时可能会导致低性能(例如,典型与自闭症)。为了应对这一点,大多数现有作品都涉及数据增强步骤,以增加培训集的规模,其多样性和代表性。尽管有效,但这种增强方法仅限于生成与输入镜头相同的样品(例如,从单个射击矩阵中产生大脑连接矩阵)。据我们所知,从单个脑图中产生大脑多编码捕获多种类型的连通性的问题仍然无法解决。在本文中,我们空前提出了一个混合图神经网络(GNN)架构,即多编码发电机网络或短暂的多gnemphnet,包括两个子网络:(1)将大脑多机的输入人群集成到单个gnn中模板图,即连接脑神庙(CBT)和(2)一个反向一对多的U-NET网络,该网络在每个训练步骤中都采用了学习的CBT并输出重建后的输入多数法文人群。两个网络都使用循环损失以端到端的方式训练。实验结果表明,与每个班级的单个CBT训练相比,对在增强大脑多数式的训练进行训练时,我们的多gnetet会提高独立分类器的性能。我们希望我们的框架能够阐明单个图的未来对多编码增强的研究。我们的Multigraphgnet源代码可在https://github.com/basiralab/multigraphgnet上获得。
translated by 谷歌翻译
图表卷积神经网络(GCNS)广泛用于图形分析。具体地,在医学应用中,GCNS可用于群体图中的疾病预测,其中曲线图节点代表个体,边缘代表个体相似度。然而,GCNS依赖于大量数据,这是对单一医学机构收集的具有挑战性。此外,大多数医疗机构继续面临的危急挑战是用不完全的数据信息分离地解决疾病预测。为了解决这些问题,联合学习(FL)允许隔离本地机构协作,没有数据共享的全局模型。在这项工作中,我们提出了一个框架FEDNI,通过FL释放网络染色和机构间数据。具体地,我们首先使用图形生成的对冲网络(GaN)联接捕获缺少节点和边缘预测器来完成本地网络的缺失信息。然后我们使用联合图形学习平台跨过机构训练全局GCN节点分类器。新颖的设计使我们能够通过利用联合学习和图表学习方法来构建更准确的机器学习模型。我们证明,我们的联邦模式优于本地和基线流动方法,在两个公共神经影像数据集中具有显着的边缘。
translated by 谷歌翻译
我们为图形神经网络提供了一个空间的联合学习框架,即STFL。该框架探讨了输入空间 - 时间数据的潜在相关性,并将其转换为节点特征和邻接矩阵。框架中的联合学习设置可确保数据隐私,同时实现了良好的模型泛化。实验结果在睡眠阶段数据集ISRUC_S3上,说明了STFL对图形预测任务的有效性。
translated by 谷歌翻译
With its capability to deal with graph data, which is widely found in practical applications, graph neural networks (GNNs) have attracted significant research attention in recent years. As societies become increasingly concerned with the need for data privacy protection, GNNs face the need to adapt to this new normal. Besides, as clients in Federated Learning (FL) may have relationships, more powerful tools are required to utilize such implicit information to boost performance. This has led to the rapid development of the emerging research field of federated graph neural networks (FedGNNs). This promising interdisciplinary field is highly challenging for interested researchers to grasp. The lack of an insightful survey on this topic further exacerbates the entry difficulty. In this paper, we bridge this gap by offering a comprehensive survey of this emerging field. We propose a 2-dimensional taxonomy of the FedGNNs literature: 1) the main taxonomy provides a clear perspective on the integration of GNNs and FL by analyzing how GNNs enhance FL training as well as how FL assists GNNs training, and 2) the auxiliary taxonomy provides a view on how FedGNNs deal with heterogeneity across FL clients. Through discussions of key ideas, challenges, and limitations of existing works, we envision future research directions that can help build more robust, explainable, efficient, fair, inductive, and comprehensive FedGNNs.
translated by 谷歌翻译
时空数据包含丰富的信息,近年来由于许多领域的相关应用程序的快速发展,近年来已广泛研究。例如,医疗机构经常使用与患者不同部位相关的电极来分析具有空间和时间特征富含脑的数据,以进行健康评估和疾病诊断。现有的研究主要使用了深度学习技术,例如卷积神经网络(CNN)或经常性神经网络(RNN)来提取隐藏的时空特征。然而,同时合并相互依存的空间信息和动态时间变化是一项挑战。实际上,对于利用这些时空特征来完成复杂预测任务的模型,它通常需要大量的培训数据才能获得令人满意的模型性能。考虑到上述挑战,我们提出了一个自适应的联合相关性框架,即Fedrel,用于在本文中为时空的图形学习。在将原始时空数据转换为高质量特征之后,框架中的核心动力学间图(DIIG)模块能够使用这些功能来生成能够捕获隐藏拓扑和长期的时空图这些图中的时间相关信息。为了提高模型的概括能力和性能,在保留本地数据隐私的同时,我们还设计了一个相关性驱动的联合学习模块,以利用其模型的细心聚合来利用来自不同参与者的各种数据分布。
translated by 谷歌翻译
Mapping the connectome of the human brain using structural or functional connectivity has become one of the most pervasive paradigms for neuroimaging analysis. Recently, Graph Neural Networks (GNNs) motivated from geometric deep learning have attracted broad interest due to their established power for modeling complex networked data. Despite their superior performance in many fields, there has not yet been a systematic study of how to design effective GNNs for brain network analysis. To bridge this gap, we present BrainGB, a benchmark for brain network analysis with GNNs. BrainGB standardizes the process by (1) summarizing brain network construction pipelines for both functional and structural neuroimaging modalities and (2) modularizing the implementation of GNN designs. We conduct extensive experiments on datasets across cohorts and modalities and recommend a set of general recipes for effective GNN designs on brain networks. To support open and reproducible research on GNN-based brain network analysis, we host the BrainGB website at https://braingb.us with models, tutorials, examples, as well as an out-of-box Python package. We hope that this work will provide useful empirical evidence and offer insights for future research in this novel and promising direction.
translated by 谷歌翻译
在医学领域,通常寻求多中心协作来通过利用患者和临床数据的异质性来产生更广泛的发现。但是,最近的隐私法规阻碍了共享数据的可能性,因此,提出了支持诊断和预后的基于机器学习的解决方案。联合学习(FL)旨在通过将基于AI的解决方案带入数据所有者,而仅共享需要汇总的本地AI模型或其部分,以避免这种限制。但是,大多数现有的联合学习解决方案仍处于起步阶段,并且由于缺乏可靠和有效的聚合计划能够保留本地学到的知识,从而显示出薄弱的隐私保护,因为可以从模型更新中重建实际数据,因此显示出几个缺点。此外,这些方法中的大多数,尤其是那些处理医学数据的方法,都依赖于一种集中的分布式学习策略,该策略构成了稳健性,可伸缩性和信任问题。在本文中,我们提出了一种分散的分布式方法,该方法从经验重播和生成对抗性研究中利用概念,有效地整合了本地节点的功能,从而提供了能够在维持隐私的同时跨多个数据集进行概括的模型。为了模拟现实的非i.i.d,使用多个数据集对两项任务进行了两项任务测试:结核病和黑色素瘤分类。数据方案。结果表明,我们的方法实现了与标准(未赋予)学习和联合方法相当的性能(因此,更有利)。
translated by 谷歌翻译
Graph Machine Learning最近在学术界和行业中都引起了人们的关注。大多数图形机器学习模型,例如图形神经网络(GNN),都经过大量的图形数据训练。但是,在许多实际情况下,例如医疗保健系统中的住院预测,图形数据通常存储在多个数据所有者中,并且由于隐私问题和法规限制,任何其他方都无法直接访问。联合图机器学习(FGML)是一种有前途的解决方案,可以通过以联合方式训练图机学习模型来应对这一挑战。在这项调查中,我们对FGML文献进行了全面的综述。具体而言,我们首先提供了一种新的分类法,将FGML中的现有问题分为两个设置,即,\ emph {fl带有结构化数据}和\ emph {结构化的fl}。然后,我们回顾每种环境中的主流技术,并详细介绍它们如何应对FGML下的挑战。此外,我们总结了来自不同域中FGML的现实应用程序,并介绍FGML中采用的开放图数据集和平台。最后,我们在现有研究中提出了一些局限性,并在该领域的研究方向有前途的方向。
translated by 谷歌翻译
在实际情况下,较大的全局图的子图可以分布在多个设备或机构之间,并且仅由于隐私限制而在本地访问,尽管它们之间可能存在链接。最近,拟议的子图联合学习(FL)方法涉及跨私人本地子图的那些缺失的链接,而分布式培训图形神经网络(GNN)。但是,他们忽略了子图中的不可避免的异质性,这是由包含全球图的不同部分的子图引起的。例如,一个子图可能属于较大的全局图中的一个社区之一。在这种情况下,天真的子图FL将从训练有异质图分布的本地GNN模型中崩溃不相容的知识。为了克服这样的局限性,我们引入了一个新的子图FL问题,即个性化的子图FL,该子图专注于相互关联的本地GNN模型的联合改进,而不是学习一个单一的全球GNN模型,并提出了一个新颖的框架,并提出了一个新型的框架,并提出了一个联合的个性化次级学习( Fed-pub),以解决它。个性化子图FL中的一个至关重要的挑战是服务器不知道每个客户端具有哪个子图。 Fed-pub因此使用随机图作为输入来计算它们之间的相似性,并使用它们执行对服务器端聚合的加权平均。此外,它在每个客户端学习一个个性化的稀疏掩码,以选择和更新聚合参数的子图相关子集。我们考虑了非重叠和重叠子图的六个数据集中的Fed-Pub在六个数据集上的子图FL性能,我们的基本上要优于相关的基线。
translated by 谷歌翻译
作为包含结构和特征信息的特殊信息载体,图被广泛用于图挖掘中,例如图形神经网络(GNNS)。但是,在某些实际情况下,图形数据分别存储在多个分布式各方中,由于利益冲突,可能不会直接共享。因此,提出了联合图神经网络来解决此类数据孤岛问题,同时保留各方(或客户)的隐私。然而,各方之间的不同图形数据分布(称为统计异质性)可能会降低诸如fedAvg之类的幼稚联合学习算法的性能。在本文中,我们提出了一个基于自我图形的联合图形学习框架Fedego,以应对上述挑战,每个客户将在此培训其本地模型,同时也为全球模型的培训做出贡献。 Fedego应用图形上的自我图形来充分利用结构信息,并利用混音来实现隐私问题。为了处理统计异质性,我们将个性化整合到学习中,并提出一种自适应混合系数策略,使客户能够实现最佳个性化。广泛的实验结果和深入分析证明了联邦的有效性。
translated by 谷歌翻译
现代神经影像学技术,例如扩散张量成像(DTI)和功能性磁共振成像(fMRI),使我们能够将人脑建模为脑网络或连接组。捕获大脑网络的结构信息和分层模式对于理解大脑功能和疾病状态至关重要。最近,图形神经网络(GNN)的有前途的网络表示能力促使许多基于GNN的方法用于脑网络分析。具体而言,这些方法应用功能聚合和全局池来将大脑网络实例转换为有意义的低维表示,用于下游大脑网络分析任务。但是,现有的基于GNN的方法通常忽略了不同受试者的大脑网络可能需要各种聚合迭代,并将GNN与固定数量的层一起学习所有大脑网络。因此,如何完全释放GNN促进大脑网络分析的潜力仍然是不平凡的。为了解决这个问题,我们提出了一个新颖的大脑网络表示框架,即BN-GNN,该框架搜索每个大脑网络的最佳GNN体系结构。具体而言,BN-GNN使用深度加固学习(DRL)来训练元派利,以自动确定给定脑网络所需的最佳特征聚合数(反映在GNN层的数量中)。在八个现实世界大脑网络数据集上进行的广泛实验表明,我们提出的BN-GNN提高了传统GNN在不同大脑网络分析任务上的性能。
translated by 谷歌翻译
随着物联网,AI和ML/DL算法的出现,数据驱动的医疗应用已成为一种有前途的工具,用于从医学数据设计可靠且可扩展的诊断和预后模型。近年来,这引起了从学术界到工业的广泛关注。这无疑改善了医疗保健提供的质量。但是,由于这些基于AI的医疗应用程序在满足严格的安全性,隐私和服务标准(例如低延迟)方面的困难,因此仍然采用较差。此外,医疗数据通常是分散的和私人的,这使得在人群之间产生强大的结果具有挑战性。联邦学习(FL)的最新发展使得以分布式方式训练复杂的机器学习模型成为可能。因此,FL已成为一个积极的研究领域,尤其是以分散的方式处理网络边缘的医疗数据,以保护隐私和安全问题。为此,本次调查论文重点介绍了数据共享是重大负担的医疗应用中FL技术的当前和未来。它还审查并讨论了当前的研究趋势及其设计可靠和可扩展模型的结果。我们概述了FL将军的统计问题,设备挑战,安全性,隐私问题及其在医疗领域的潜力。此外,我们的研究还集中在医疗应用上,我们重点介绍了全球癌症的负担以及有效利用FL来开发计算机辅助诊断工具来解决这些诊断工具。我们希望这篇评论是一个检查站,以彻底的方式阐明现有的最新最新作品,并为该领域提供开放的问题和未来的研究指示。
translated by 谷歌翻译
由于其在分布式机器学习中的隐私保护,联邦学习引起了很多研究。然而,联合学习的现有工作主要侧重于卷积神经网络(CNN),其无法有效处理在许多应用中流行的图形数据。图表卷积网络(GCN)已被提出为图表学习最有前途的技术之一,但其联邦设置很少探索。在本文中,我们提出了在多个计算客户端之间的联合图学习的FedRogk,每个Chouble Graph学习,其中每个计算包括子图。 Fed FredGraph通过解决两个独特的挑战来提供强大的图形学习能力。首先,传统的GCN培训需要客户之间的数据共享,导致隐私泄漏的风险。 Fed FedGraph使用新的跨客户端卷积操作来解决此问题。第二个挑战是高GCN训练开销,由大图尺寸发生。我们提出了一种基于深度加强学习的智能图形采样算法,可以自动收敛到平衡训练速度和准确性的最佳采样策略。我们基于Pytorch实现FedFraph,并在测试平台上部署绩效评估。四个流行数据集的实验结果表明,Fed FedGraph通过使更高的准确性更快地融合来显着优于现有的工作。
translated by 谷歌翻译
通信技术和互联网的最新进展与人工智能(AI)启用了智能医疗保健。传统上,由于现代医疗保健网络的高性性和日益增长的数据隐私问题,AI技术需要集中式数据收集和处理,这可能在现实的医疗环境中可能是不可行的。作为一个新兴的分布式协作AI范例,通过协调多个客户(例如,医院)来执行AI培训而不共享原始数据,对智能医疗保健特别有吸引力。因此,我们对智能医疗保健的使用提供了全面的调查。首先,我们在智能医疗保健中展示了近期进程,动机和使用FL的要求。然后讨论了近期智能医疗保健的FL设计,从资源感知FL,安全和隐私感知到激励FL和个性化FL。随后,我们对关键医疗领域的FL新兴应用提供了最先进的综述,包括健康数据管理,远程健康监测,医学成像和Covid-19检测。分析了几个最近基于智能医疗保健项目,并突出了从调查中学到的关键经验教训。最后,我们讨论了智能医疗保健未来研究的有趣研究挑战和可能的指示。
translated by 谷歌翻译
人的大脑位于复杂的神经生物学系统的核心,神经元,电路和子系统以神秘的方式相互作用。长期以来,了解大脑的结构和功能机制一直是神经科学研究和临床障碍疗法的引人入胜的追求。将人脑作为网络的连接映射是神经科学中最普遍的范例之一。图神经网络(GNN)最近已成为建模复杂网络数据的潜在方法。另一方面,深层模型的可解释性低,从而阻止了他们在医疗保健等决策环境中的使用。为了弥合这一差距,我们提出了一个可解释的框架,以分析特定的利益区域(ROI)和突出的联系。提出的框架由两个模块组成:疾病预测的面向脑网络的主链模型和全球共享的解释发生器,该模型突出了包括疾病特异性的生物标志物,包括显着的ROI和重要连接。我们在三个现实世界中的脑疾病数据集上进行实验。结果证明了我们的框架可以获得出色的性能并确定有意义的生物标志物。这项工作的所有代码均可在https://github.com/hennyjie/ibgnn.git上获得。
translated by 谷歌翻译
The challenges of collecting medical data on neurological disorder diagnosis problems paved the way for learning methods with scarce number of samples. Due to this reason, one-shot learning still remains one of the most challenging and trending concepts of deep learning as it proposes to simulate the human-like learning approach in classification problems. Previous studies have focused on generating more accurate fingerprints of the population using graph neural networks (GNNs) with connectomic brain graph data. Thereby, generated population fingerprints named connectional brain template (CBTs) enabled detecting discriminative bio-markers of the population on classification tasks. However, the reverse problem of data augmentation from single graph data representing brain connectivity has never been tackled before. In this paper, we propose an augmentation pipeline in order to provide improved metrics on our binary classification problem. Divergently from the previous studies, we examine augmentation from a single population template by utilizing graph-based generative adversarial network (gGAN) architecture for a classification problem. We benchmarked our proposed solution on AD/LMCI dataset consisting of brain connectomes with Alzheimer's Disease (AD) and Late Mild Cognitive Impairment (LMCI). In order to evaluate our model's generalizability, we used cross-validation strategy and randomly sampled the folds multiple times. Our results on classification not only provided better accuracy when augmented data generated from one sample is introduced, but yields more balanced results on other metrics as well.
translated by 谷歌翻译
最近,大脑网络已被广泛采用来研究脑动力学,脑发育和脑部疾病。大脑功能网络上的图表学习技术可以促进发现用于临床表型和神经退行性疾病的新型生物标志物。但是,当前的图形学习技术在大脑网络挖掘上存在几个问题。首先,大多数当前的图形学习模型都是为无符号图设计的,这阻碍了对许多签名网络数据(例如大脑功能网络)的分析。同时,大脑网络数据的不足限制了临床表型预测的模型性能。此外,当前的图形学习模型很少是可以解释的,这可能无法为模型结果提供生物学见解。在这里,我们提出了一个可解释的层次签名的图形表示模型,以从大脑功能网络中提取图形表示,可用于不同的预测任务。为了进一步提高模型性能,我们还提出了一种新策略,以增强功能性脑网络数据以进行对比学习。我们使用HCP和OASIS的数据评估了有关不同分类和回归任务的框架。我们来自广泛的实验的结果表明,与几种最新技术相比,该模型的优越性。此外,我们使用从这些预测任务得出的图形显着性图来证明表型生物标志物的检测和解释。
translated by 谷歌翻译
人工智能(AI)为简化Covid-19诊断提供了有前景的替代。然而,涉及周围的安全和可信度的担忧阻碍了大规模代表性的医学数据,对临床实践中训练广泛的模型造成了相当大的挑战。为了解决这个问题,我们启动了统一的CT-Covid AI诊断计划(UCADI),其中AI模型可以在没有数据共享的联合学习框架(FL)下在每个主机机构下分发和独立地在没有数据共享的情况下在每个主机机构上执行。在这里,我们认为我们的FL模型通过大的产量(中国测试敏感性/特异性:0.973 / 0.951,英国:0.730 / 0.942),与专业放射科医师的面板实现可比性表现。我们进一步评估了持有的模型(从另外两家医院收集,留出FL)和异构(用造影材料获取)数据,提供了模型所做的决策的视觉解释,并分析了模型之间的权衡联邦培训过程中的性能和沟通成本。我们的研究基于来自位于中国和英国的23家医院的3,336名患者的9,573次胸部计算断层扫描扫描(CTS)。统称,我们的工作提出了利用联邦学习的潜在保留了数字健康的前景。
translated by 谷歌翻译