In many unmanned aerial vehicle (UAV) applications for surveillance and data collection, it is not possible to reach all requested locations due to the given maximum flight time. Hence, the requested locations must be prioritized and the problem of selecting the most important locations is modeled as an Orienteering Problem (OP). To fully exploit the kinematic properties of the UAV in such scenarios, we combine the OP with the generation of time-optimal trajectories with bounds on velocity and acceleration. We define the resulting problem as the Kinematic Orienteering Problem (KOP) and propose an exact mixed-integer formulation together with a Large Neighborhood Search (LNS) as a heuristic solution method. We demonstrate the effectiveness of our approach based on Orienteering instances from the literature and benchmark against optimal solutions of the Dubins Orienteering Problem (DOP) as the state-of-the-art. Additionally, we show by simulation \color{black} that the resulting solutions can be tracked precisely by a modern MPC-based flight controller. Since we demonstrate that the state-of-the-art in generating time-optimal trajectories in multiple dimensions is not generally correct, we further present an improved analytical method for time-optimal trajectory generation.
translated by 谷歌翻译
This paper presents a new method for integrated time-optimal routing and trajectory optimization of multirotor unmanned aerial vehicles (UAVs). Our approach extends the well-known Traveling Salesman Problem by accounting for the limited maneuverability of the UAVs due to their kinematic properties. To this end, we allow each waypoint to be traversed with a discretized velocity as well as a discretized flight direction and compute time-optimal trajectories to determine the travel time costs for each edge. We refer to this novel optimization problem as the Trajectory-based Traveling Salesman Problem (TBTSP). The results show that compared to a state-of-the-art approach for Traveling Salesman Problems with kinematic restrictions of UAVs, we can decrease mission duration by up to 15\%.
translated by 谷歌翻译
通常,可以将最佳运动计划作为本地和全球执行。在这样的计划中,支持本地或全球计划技术的选择主要取决于环境条件是动态的还是静态的。因此,最适当的选择是与全球计划一起使用本地计划或本地计划。当设计最佳运动计划是本地或全球的时,要记住的关键指标是执行时间,渐近最优性,对动态障碍的快速反应。与其他方法相比,这种计划方法可以更有效地解决上述目标指标,例如路径计划,然后进行平滑。因此,这项研究的最重要目标是分析相关文献,以了解运动计划,特别轨迹计划,问题,当应用于实时生成最佳轨迹的多局部航空车(MAV),影响力(MAV)时如何提出问题。列出的指标。作为研究的结果,轨迹计划问题被分解为一组子问题,详细列出了解决每个问题的方法列表。随后,总结了2010年至2022年最突出的结果,并以时间表的形式呈现。
translated by 谷歌翻译
Despite recent progress on trajectory planning of multiple robots and path planning of a single tethered robot, planning of multiple tethered robots to reach their individual targets without entanglements remains a challenging problem. In this paper, we present a complete approach to address this problem. Firstly, we propose a multi-robot tether-aware representation of homotopy, using which we can efficiently evaluate the feasibility and safety of a potential path in terms of (1) the cable length required to reach a target following the path, and (2) the risk of entanglements with the cables of other robots. Then, the proposed representation is applied in a decentralized and online planning framework that includes a graph-based kinodynamic trajectory finder and an optimization-based trajectory refinement, to generate entanglement-free, collision-free and dynamically feasible trajectories. The efficiency of the proposed homotopy representation is compared against existing single and multiple tethered robot planning approaches. Simulations with up to 8 UAVs show the effectiveness of the approach in entanglement prevention and its real-time capabilities. Flight experiments using 3 tethered UAVs verify the practicality of the presented approach.
translated by 谷歌翻译
We address the theoretical and practical problems related to the trajectory generation and tracking control of tail-sitter UAVs. Theoretically, we focus on the differential flatness property with full exploitation of actual UAV aerodynamic models, which lays a foundation for generating dynamically feasible trajectory and achieving high-performance tracking control. We have found that a tail-sitter is differentially flat with accurate aerodynamic models within the entire flight envelope, by specifying coordinate flight condition and choosing the vehicle position as the flat output. This fundamental property allows us to fully exploit the high-fidelity aerodynamic models in the trajectory planning and tracking control to achieve accurate tail-sitter flights. Particularly, an optimization-based trajectory planner for tail-sitters is proposed to design high-quality, smooth trajectories with consideration of kinodynamic constraints, singularity-free constraints and actuator saturation. The planned trajectory of flat output is transformed to state trajectory in real-time with consideration of wind in environments. To track the state trajectory, a global, singularity-free, and minimally-parameterized on-manifold MPC is developed, which fully leverages the accurate aerodynamic model to achieve high-accuracy trajectory tracking within the whole flight envelope. The effectiveness of the proposed framework is demonstrated through extensive real-world experiments in both indoor and outdoor field tests, including agile SE(3) flight through consecutive narrow windows requiring specific attitude and with speed up to 10m/s, typical tail-sitter maneuvers (transition, level flight and loiter) with speed up to 20m/s, and extremely aggressive aerobatic maneuvers (Wingover, Loop, Vertical Eight and Cuban Eight) with acceleration up to 2.5g.
translated by 谷歌翻译
在粗糙的地形上的动态运动需要准确的脚部放置,避免碰撞以及系统的动态不足的计划。在存在不完美且常常不完整的感知信息的情况下,可靠地优化此类动作和互动是具有挑战性的。我们提出了一个完整的感知,计划和控制管道,可以实时优化机器人所有自由度的动作。为了减轻地形所带来的数值挑战,凸出不平等约束的顺序被提取为立足性可行性的局部近似值,并嵌入到在线模型预测控制器中。每个高程映射预先计算了步骤性分类,平面分割和签名的距离场,以最大程度地减少优化过程中的计算工作。多次射击,实时迭代和基于滤波器的线路搜索的组合用于可靠地以高速率解决该法式问题。我们在模拟中的间隙,斜率和踏上石头的情况下验证了所提出的方法,并在Anymal四倍的平台上进行实验,从而实现了最新的动态攀登。
translated by 谷歌翻译
This paper presents trajectory planning for three-dimensional autonomous multi-UAV volume coverage and visual inspection based on the Heat Equation Driven Area Coverage (HEDAC) algorithm. The method designs a potential field to achieve the target density and generate trajectories using potential gradients to direct UAVs to regions of a higher potential. Collisions are prevented by implementing a distance field and correcting the agent's directional vector if the distance threshold is reached. The method is successfully tested for volume coverage and visual inspection of complex structures such as wind turbines and a bridge. For visual inspection, the algorithm is supplemented with camera direction control. A field containing the nearest distance from any point in the domain to the structure is designed and this field's gradient provides the camera orientation throughout the trajectory. The bridge inspection test case is compared with a state-of-the-art method where the HEDAC algorithm allowed more surface area to be inspected under the same conditions. The limitations of the HEDAC method are analyzed, focusing on computational efficiency and adequacy of spatial coverage to approximate the surface coverage. The proposed methodology offers flexibility in various setup parameters and is applicable to real-world inspection tasks.
translated by 谷歌翻译
线覆盖范围的问题是找到有效的路由,以通过一个或多个资源约束的机器人覆盖线性特征。线性具有模型环境,例如道路网络,电力线以及石油和天然气管道。我们为机器人定义了两种旅行模式:维修和陷入困境。机器人服务功能如果它执行特定于任务的操作,例如拍摄图像,则它可以遍历该功能;否则,它是无人机的。穿越环境会产生成本(例如旅行时间)和对资源的需求(例如电池寿命)。维修和无人机的成本和需求功能可能具有不同的成本和需求功能,我们进一步允许它们取决于方向。我们将环境建模为图形,并提供整数线性程序。由于问题是NP-HARD,因此我们开发了一种快速有效的启发式算法,即合并 - 默认混合物(MEM)。该算法的建设性属性使得为大图求解了多depot版本。我们进一步扩展了MEM算法,以处理转弯成本和非语言限制。我们在50个道路网络的数据集上对算法进行基准测试,并在道路网络上使用空中机器人进行了实验中的算法。
translated by 谷歌翻译
The increasing interest in autonomous robots with a high number of degrees of freedom for industrial applications and service robotics demands control algorithms to handle multiple tasks as well as hard constraints efficiently. This paper presents a general framework in which both kinematic (velocity- or acceleration-based) and dynamic (torque-based) control of redundant robots are handled in a unified fashion. The framework allows for the specification of redundancy resolution problems featuring a hierarchy of arbitrary (equality and inequality) constraints, arbitrary weighting of the control effort in the cost function and an additional input used to optimize possibly remaining redundancy. To solve such problems, a generalization of the Saturation in the Null Space (SNS) algorithm is introduced, which extends the original method according to the features required by our general control framework. Variants of the developed algorithm are presented, which ensure both efficient computation and optimality of the solution. Experiments on a KUKA LBRiiwa robotic arm, as well as simulations with a highly redundant mobile manipulator are reported.
translated by 谷歌翻译
由于机器人动力学中的固有非线性,腿部机器人全身动作的在线计划具有挑战性。在这项工作中,我们提出了一个非线性MPC框架,该框架可以通过有效利用机器人动力学结构来在线生成全身轨迹。Biconmp用于在真正的四倍机器人上生成各种环状步态,其性能在不同的地形上进行了评估,对抗不同步态之间的不可预见的推动力并在线过渡。此外,提出了双孔在机器人上产生非平凡无环的全身动态运动的能力。同样的方法也被用来在人体机器人(TALOS)上产生MPC的各种动态运动,并在模拟中产生另一个四倍的机器人(Anymal)。最后,报告并讨论了对计划范围和频率对非线性MPC框架的影响的广泛经验分析。
translated by 谷歌翻译
热方程驱动区域覆盖范围(HEDAC)是由潜在场的梯度引导的最先进的多机颈运动控制。特此实施有限元方法以获得Helmholtz部分微分方程的解决方案,该方程对测量运动控制的潜在字段进行了建模。这使我们能够调查任意形状的领域,并以优雅而健壮的方式包括Hedac的基本想法。对于简单的运动运动运动,通过将试剂运动用电位的梯度引导,可以成功处理障碍和边界避免限制。但是,包括其他约束,例如固定障碍物和移动障碍物的最小间隙距离以及最小的路径曲率半径,都需要控制算法的进一步交替。我们通过基于无碰撞逃生路线操纵的直接优化问题制定了一种相对简单但可靠的方法来处理这些约束的方法。这种方法提供了保证的避免碰撞机制,同时由于优化问题分配而在计算上是便宜的。在三个现实的测量场景模拟中评估了所提出的运动控制,显示了测量的有效性和控制算法的鲁棒性。此外,突出了由于定义不当的测量场景而引起的潜在操纵困难,我们提供了有关如何超越它们的指南。结果是有希望的,并表明了对自主测量和潜在的其他HEDAC利用的拟议受限的多代理运动控制的现实适用性。
translated by 谷歌翻译
本文着重于影响弹性的移动机器人的碰撞运动计划和控制的新兴范式转移,并开发了一个统一的层次结构框架,用于在未知和部分观察的杂物空间中导航。在较低级别上,我们开发了一种变形恢复控制和轨迹重新启动策略,该策略处理可能在本地运行时发生的碰撞。低级系统会积极检测碰撞(通过内部内置的移动机器人上的嵌入式霍尔效应传感器),使机器人能够从其内部恢复,并在本地调整后影响后的轨迹。然后,在高层,我们提出了一种基于搜索的计划算法,以确定如何最好地利用潜在的碰撞来改善某些指标,例如控制能量和计算时间。我们的方法建立在A*带有跳跃点的基础上。我们生成了一种新颖的启发式功能,并进行了碰撞检查和调整技术,从而使A*算法通过利用和利用可能的碰撞来更快地收敛到达目标。通过将全局A*算法和局部变形恢复和重新融合策略以及该框架的各个组件相结合而生成的整体分层框架在模拟和实验中都经过了广泛的测试。一项消融研究借鉴了与基于搜索的最先进的避免碰撞计划者(用于整体框架)的链接,以及基于搜索的避免碰撞和基于采样的碰撞 - 碰撞 - 全球规划师(对于更高的较高的碰撞 - 等级)。结果证明了我们的方法在未知环境中具有碰撞的运动计划和控制的功效,在2D中运行的一类撞击弹性机器人具有孤立的障碍物。
translated by 谷歌翻译
在腿部机器人技术中,计划和执行敏捷的机动演习一直是一个长期的挑战。它需要实时得出运动计划和本地反馈政策,以处理动力学动量的非物质。为此,我们提出了一个混合预测控制器,该控制器考虑了机器人的致动界限和全身动力学。它将反馈政策与触觉信息相结合,以在本地预测未来的行动。由于采用可行性驱动的方法,它在几毫秒内收敛。我们的预测控制器使Anymal机器人能够在现实的场景中生成敏捷操作。关键要素是跟踪本地反馈策略,因为与全身控制相反,它们达到了所需的角动量。据我们所知,我们的预测控制器是第一个处理驱动限制,生成敏捷的机动操作以及执行低级扭矩控制的最佳反馈策略,而无需使用单独的全身控制器。
translated by 谷歌翻译
研究界,工业和社会中地面移动机器人(MRS)和无人机(UAV)的重要性正在迅速发展。如今,这些代理中的许多代理都配备了通信系统,在某些情况下,对于成功完成某些任务至关重要。在这种情况下,我们已经开始见证在机器人技术和通信的交集中开发一个新的跨学科研究领域。该研究领域的意图是将无人机集成到5G和6G通信网络中。这项研究无疑将在不久的将来导致许多重要的应用。然而,该研究领域发展的主要障碍之一是,大多数研究人员通过过度简化机器人技术或通信方面来解决这些问题。这阻碍了达到这个新的跨学科研究领域的全部潜力的能力。在本教程中,我们介绍了一些建模工具,从跨学科的角度来解决涉及机器人技术和通信的问题所需的一些建模工具。作为此类问题的说明性示例,我们将重点放在本教程上,讨论通信感知轨迹计划的问题。
translated by 谷歌翻译
在本文中,我们提出了一种反应性约束导航方案,并避免了无人驾驶汽车(UAV)的嵌入式障碍物,以便在障碍物密集的环境中实现导航。拟议的导航体系结构基于非线性模型预测控制(NMPC),并利用板载2D激光雷达来检测障碍物并在线转换环境的关键几何信息为NMPC的参数约束,以限制可用位置空间的可用位置空间无人机。本文还重点介绍了所提出的反应导航方案的现实实施和实验验证,并将其应用于多个具有挑战性的实验室实验中,我们还与相关的反应性障碍物避免方法进行了比较。提出的方法中使用的求解器是优化引擎(开放)和近端平均牛顿进行最佳控制(PANOC)算法,其中采用了惩罚方法来正确考虑导航任务期间的障碍和输入约束。拟议的新颖方案允许快速解决方案,同时使用有限的车载计算能力,这是无人机的整体闭环性能的必需功能,并在多个实时场景中应用。内置障碍物避免和实时适用性的结合使所提出的反应性约束导航方案成为无人机的优雅框架,能够执行快速的非线性控制,本地路径计划和避免障碍物,所有框架都嵌入了控制层中。
translated by 谷歌翻译
作为自动驾驶系统的核心部分,运动计划已受到学术界和行业的广泛关注。但是,由于非体力学动力学,尤其是在存在非结构化的环境和动态障碍的情况下,没有能够有效的轨迹计划解决方案能够为空间周期关节优化。为了弥合差距,我们提出了一种多功能和实时轨迹优化方法,该方法可以在任意约束下使用完整的车辆模型生成高质量的可行轨迹。通过利用类似汽车的机器人的差异平坦性能,我们使用平坦的输出来分析所有可行性约束,以简化轨迹计划问题。此外,通过全尺寸多边形实现避免障碍物,以产生较少的保守轨迹,并具有安全保证,尤其是在紧密约束的空间中。我们通过最先进的方法介绍了全面的基准测试,这证明了所提出的方法在效率和轨迹质量方面的重要性。现实世界实验验证了我们算法的实用性。我们将发布我们的代码作为开源软件包,目的是参考研究社区。
translated by 谷歌翻译
在许多无人机应用中,为空中机器人计划的时间轨迹至关重要,例如救援任务和包装交付,这些应用程序近年来已经广泛研究。但是,它仍然涉及一些挑战,尤其是在将特殊任务要求纳入计划以及空中机器人的动态方面。在这项工作中,我们研究了一种案例,使空中操纵器应以时间优势的方式从移动的移动机器人中移交一个包裹。我们没有手动设置方法轨迹,这使得很难确定在动态范围内完成所需任务的最佳总行进时间,而是提出了一个优化框架,该框架将离散的力学和互补性约束(DMCC)结合在一起。在提出的框架中,系统动力学受到离散的拉格朗日力学的约束,该机械也根据我们的实验提供了可靠的估计结果。移交机会是根据所需的互补限制自动确定和安排的。最后,通过使用我们的自设计的空中操纵器进行数值模拟和硬件实验来验证所提出的框架的性能。
translated by 谷歌翻译
在本文中,我们解决了使用时间优势控制策略驾驶四极管的问题,这些政策可以在环境变化或遇到未知的干扰时在线重新认可。这个问题具有挑战性,因为考虑到完整的四项动力学的时间优势轨迹在计算上的生成昂贵(分钟或什至数小时)。我们引入了一种基于抽样的方法,用于有效地生成点质量模型的时间优势路径。然后,使用模型预测性轮廓控制方法跟踪这些路径,该方法考虑了完整的四型动力学和单转子推力极限。我们的组合方法能够实时运行,这是能够适应更改的首次最佳方法。我们通过在大门移动的赛车轨道上以超过60 km/h的速度飞行四肢旋转器,展示了我们的方法的适应能力。此外,我们表明我们的在线重新植物方法可以应对由高达68 km/h的强烈干扰。
translated by 谷歌翻译
双向运动规划与其单向对应物相比,平均地减少计划时间。在单次查询可行的运动规划中,使用双向搜索来查找连续运动计划需要前向和反向搜索树之间的边缘连接。这样的树木连接需要解决两点边值问题问题(BVP)。然而,两点BVP解决方案可能是困难的或不可能计算许多系统。我们提出了一种新的双向搜索策略,不需要解决两点BVP。反向树的成本信息而不是直接连接前向和反向树木,而是用作前向搜索的指导启发式。这使得前向搜索能够快速收敛到可行的解决方案而不解决两点BVP。我们提出了两个新的算法(GBRRT和GABRRT),使用此策略并使用多种动态系统和现实世界硬件实验运行多个软件模拟,以表明我们的算法表现出对现有最先进的方法进行的或更好在快速找到初始可行的解决方案时。
translated by 谷歌翻译
This book provides a solution to the control and motion planning design for an octocopter system. It includes a particular choice of control and motion planning algorithms which is based on the authors' previous research work, so it can be used as a reference design guidance for students, researchers as well as autonomous vehicles hobbyists. The control is constructed based on a fault tolerant approach aiming to increase the chances of the system to detect and isolate a potential failure in order to produce feasible control signals to the remaining active motors. The used motion planning algorithm is risk-aware by means that it takes into account the constraints related to the fault-dependant and mission-related maneuverability analysis of the octocopter system during the planning stage. Such a planner generates only those reference trajectories along which the octocopter system would be safe and capable of good tracking in case of a single motor fault and of majority of double motor fault scenarios. The control and motion planning algorithms presented in the book aim to increase the overall reliability of the system for completing the mission.
translated by 谷歌翻译