在过分层化的模型中,随机梯度下降(SGD)中的噪声隐含地规则地规则地规范优化轨迹并确定哪个局部最小SGD收敛到。通过实证研究的推动,表明利用嘈杂标签的培训改善了泛化,我们研究了SGD与标签噪声的隐式正则化效果。我们展示了标签噪声的SGD收敛到正规化损失$ l(\θ)+ \ lambda r(\ theta)$的静止点,其中$ l(\ theta)$是培训损失,$ \ lambda $有效的正则化参数,具体取决于步骤尺寸,标签噪声的强度和批量大小,以及$ r(\ theta)$是一个惩罚剧本最小化器的显式规范器。我们的分析揭示了大型学习率的额外正则化效果,超出了线性扩展规则,这些规则惩罚了Hessian的大型特征值,而不是小小的。我们还证明了与一般损失职能,SGD的分类分类,以及具有一般噪声协方差的SGD,大大加强了Blanc等人的前后工作。全球融合和大型学习率和哈奇等人。一般模型。
translated by 谷歌翻译
Sharpness-Aware Minimization (SAM) is a highly effective regularization technique for improving the generalization of deep neural networks for various settings. However, the underlying working of SAM remains elusive because of various intriguing approximations in the theoretical characterizations. SAM intends to penalize a notion of sharpness of the model but implements a computationally efficient variant; moreover, a third notion of sharpness was used for proving generalization guarantees. The subtle differences in these notions of sharpness can indeed lead to significantly different empirical results. This paper rigorously nails down the exact sharpness notion that SAM regularizes and clarifies the underlying mechanism. We also show that the two steps of approximations in the original motivation of SAM individually lead to inaccurate local conclusions, but their combination accidentally reveals the correct effect, when full-batch gradients are applied. Furthermore, we also prove that the stochastic version of SAM in fact regularizes the third notion of sharpness mentioned above, which is most likely to be the preferred notion for practical performance. The key mechanism behind this intriguing phenomenon is the alignment between the gradient and the top eigenvector of Hessian when SAM is applied.
translated by 谷歌翻译
了解随机梯度下降(SGD)的隐式偏见是深度学习的关键挑战之一,尤其是对于过度透明的模型,损失功能的局部最小化$ l $可以形成多种多样的模型。从直觉上讲,SGD $ \ eta $的学习率很小,SGD跟踪梯度下降(GD),直到它接近这种歧管为止,梯度噪声阻止了进一步的收敛。在这样的政权中,Blanc等人。 (2020)证明,带有标签噪声的SGD局部降低了常规术语,损失的清晰度,$ \ mathrm {tr} [\ nabla^2 l] $。当前的论文通过调整Katzenberger(1991)的想法提供了一个总体框架。它原则上允许使用随机微分方程(SDE)描述参数的限制动力学的SGD围绕此歧管的正规化效应(即“隐式偏见”)的正则化效应,这是由损失共同确定的功能和噪声协方差。这产生了一些新的结果:(1)与Blanc等人的局部分析相比,对$ \ eta^{ - 2} $ steps有效的隐性偏差进行了全局分析。 (2020)仅适用于$ \ eta^{ - 1.6} $ steps和(2)允许任意噪声协方差。作为一个应用程序,我们以任意大的初始化显示,标签噪声SGD始终可以逃脱内核制度,并且仅需要$ o(\ kappa \ ln d)$样本用于学习$ \ kappa $ -sparse $ -sparse yroverparame parametrized linearized Linear Modal in $ \ Mathbb {r}^d $(Woodworth等,2020),而GD在内核制度中初始化的GD需要$ \ omega(d)$样本。该上限是最小值的最佳,并改善了先前的$ \ tilde {o}(\ kappa^2)$上限(Haochen等,2020)。
translated by 谷歌翻译
引入了归一化层(例如,批处理归一化,层归一化),以帮助在非常深的网中获得优化困难,但它们显然也有助于概括,即使在不太深入的网中也是如此。由于长期以来的信念,即最小的最小值导致更好的概括,本文提供了数学分析和支持实验,这表明归一化(与伴随的重量赛一起)鼓励GD降低损失表面的清晰度。鉴于损失是标准不变的,这是标准化的已知结果,因此仔细地定义了“清晰度”。具体而言,对于具有归一化的相当广泛的神经网类,我们的理论解释了有限学习率的GD如何进入所谓的稳定边缘(EOS)制度,并通过连续的清晰度来表征GD的轨迹 - 还原流。
translated by 谷歌翻译
Cohen等人的深度学习实验。 [2021]使用确定性梯度下降(GD)显示学习率(LR)和清晰度(即Hessian最大的特征值)的稳定边缘(EOS)阶段不再像传统优化一样行为。清晰度稳定在$ 2/$ LR的左右,并且在迭代中损失不断上下,但仍有整体下降趋势。当前的论文数学分析了EOS阶段中隐式正则化的新机制,因此,由于非平滑损失景观而导致的GD更新沿着最小损失的多种流量进行了一些确定性流程发展。这与许多先前关于隐式偏差依靠无限更新或梯度中的噪声的结果相反。正式地,对于具有某些规律性条件的任何平滑函数$ l $,对于(1)标准化的GD,即具有不同的lr $ \ eta_t = \ frac {\ eta} {||的GD证明了此效果。 \ nabla l(x(t))||} $和损失$ l $; (2)具有常数LR和损失$ \ sqrt {l- \ min_x l(x)} $的GD。两者都可以证明进入稳定性的边缘,在歧管上相关的流量最小化$ \ lambda_ {1}(\ nabla^2 l)$。一项实验研究证实了上述理论结果。
translated by 谷歌翻译
The fundamental learning theory behind neural networks remains largely open. What classes of functions can neural networks actually learn? Why doesn't the trained network overfit when it is overparameterized?In this work, we prove that overparameterized neural networks can learn some notable concept classes, including two and three-layer networks with fewer parameters and smooth activations. Moreover, the learning can be simply done by SGD (stochastic gradient descent) or its variants in polynomial time using polynomially many samples. The sample complexity can also be almost independent of the number of parameters in the network.On the technique side, our analysis goes beyond the so-called NTK (neural tangent kernel) linearization of neural networks in prior works. We establish a new notion of quadratic approximation of the neural network (that can be viewed as a second-order variant of NTK), and connect it to the SGD theory of escaping saddle points.
translated by 谷歌翻译
深度学习理论的最新目标是确定神经网络如何逃脱“懒惰训练”或神经切线内核(NTK)制度,在该制度中,网络与初始化时的一阶泰勒扩展相结合。尽管NTK是最大程度地用于学习密集多项式的最佳选择(Ghorbani等,2021),但它无法学习特征,因此对于学习包括稀疏多项式(稀疏多项式)的许多类别的功能的样本复杂性较差。因此,最近的工作旨在确定基于梯度的算法比NTK更好地概括的设置。一个这样的例子是Bai和Lee(2020)的“ Quadntk”方法,该方法分析了泰勒膨胀中的二阶项。 Bai和Lee(2020)表明,二阶项可以有效地学习稀疏的多项式。但是,它牺牲了学习一般密集多项式的能力。在本文中,我们分析了两层神经网络上的梯度下降如何通过利用NTK(Montanari和Zhong,2020)的光谱表征并在Quadntk方法上构建来逃脱NTK制度。我们首先扩展了光谱分析,以确定参数空间中的“良好”方向,在该空间中我们可以在不损害概括的情况下移动。接下来,我们表明一个宽的两层神经网络可以共同使用NTK和QUADNTK来适合由密集的低度项和稀疏高度术语组成的目标功能 - NTK和Quadntk无法在他们自己的。最后,我们构建了一个正常化程序,该正规化器鼓励我们的参数向量以“良好”的方向移动,并表明正规化损失上的梯度下降将融合到全局最小化器,这也有较低的测试误差。这产生了端到端的融合和概括保证,并自行对NTK和Quadntk进行了可证明的样本复杂性的改善。
translated by 谷歌翻译
过度分辨率是指选择神经网络的宽度,使得学习算法可以在非凸训练中可被估计零损失的重要现象。现有理论建立了各种初始化策略,培训修改和宽度缩放等全局融合。特别地,最先进的结果要求宽度以二次逐步缩放,并在实践中使用的标准初始化策略下进行培训数据的数量,以获得最佳泛化性能。相比之下,最新的结果可以获得线性缩放,需要导致导致“懒惰训练”的初始化,或者仅训练单层。在这项工作中,我们提供了一个分析框架,使我们能够采用标准的初始化策略,可能避免懒惰的训练,并在基本浅色神经网络中同时培训所有层,同时获得网络宽度的理想子标缩放。我们通过Polyak-Lojasiewicz条件,平滑度和数据标准假设实现了Desiderata,并使用随机矩阵理论的工具。
translated by 谷歌翻译
在深度学习中的优化分析是连续的,专注于(变体)梯度流动,或离散,直接处理(变体)梯度下降。梯度流程可符合理论分析,但是风格化并忽略计算效率。它代表梯度下降的程度是深度学习理论的一个开放问题。目前的论文研究了这个问题。将梯度下降视为梯度流量初始值问题的近似数值问题,发现近似程度取决于梯度流动轨迹周围的曲率。然后,我们表明,在具有均匀激活的深度神经网络中,梯度流动轨迹享有有利的曲率,表明它们通过梯度下降近似地近似。该发现允许我们将深度线性神经网络的梯度流分析转换为保证梯度下降,其几乎肯定会在随机初始化下有效地收敛到全局最小值。实验表明,在简单的深度神经网络中,具有传统步长的梯度下降确实接近梯度流。我们假设梯度流动理论将解开深入学习背后的奥秘。
translated by 谷歌翻译
良性过度拟合,即插值模型在存在嘈杂数据的情况下很好地推广的现象,首先是在接受梯度下降训练的神经网络模型中观察到的。为了更好地理解这一经验观察,我们考虑了通过梯度下降训练的两层神经网络的概括误差,后者是随机初始化后的逻辑损失。我们假设数据来自分离良好的集体条件对数符合分布,并允许训练标签的持续部分被对手损坏。我们表明,在这种情况下,神经网络表现出良性过度拟合:它们可以驱动到零训练错误,完美拟合所有嘈杂的训练标签,并同时达到最小值最佳测试错误。与以前需要线性或基于内核预测的良性过度拟合的工作相反,我们的分析在模型和学习动力学基本上是非线性的环境中。
translated by 谷歌翻译
古典统计学习理论表示,拟合太多参数导致过度舒服和性能差。尽管大量参数矛盾,但是现代深度神经网络概括了这一发现,并构成了解释深度学习成功的主要未解决的问题。随机梯度下降(SGD)引起的隐式正规被认为是重要的,但其特定原则仍然是未知的。在这项工作中,我们研究了当地最小值周围的能量景观的局部几何学如何影响SGD的统计特性,具有高斯梯度噪声。我们争辩说,在合理的假设下,局部几何形状力强制SGD保持接近低维子空间,这会引起隐式正则化并导致深神经网络的泛化误差界定更严格的界限。为了获得神经网络的泛化误差界限,我们首先引入局部最小值周围的停滞迹象,并施加人口风险的局部基本凸性财产。在这些条件下,推导出SGD的下界,以保留在这些停滞套件中。如果发生停滞,我们会导出涉及权重矩阵的光谱规范的深神经网络的泛化误差的界限,但不是网络参数的数量。从技术上讲,我们的证据基于控制SGD中的参数值的变化以及基于局部最小值周围的合适邻域的熵迭代的参数值和局部均匀收敛。我们的工作试图通过统一收敛更好地连接非凸优化和泛化分析。
translated by 谷歌翻译
我们考虑使用梯度下降来最大程度地减少$ f(x)= \ phi(xx^{t})$在$ n \ times r $因件矩阵$ x $上,其中$ \ phi是一种基础平稳凸成本函数定义了$ n \ times n $矩阵。虽然只能在合理的时间内发现只有二阶固定点$ x $,但如果$ x $的排名不足,则其排名不足证明其是全球最佳的。这种认证全球最优性的方式必然需要当前迭代$ x $的搜索等级$ r $,以相对于级别$ r^{\ star} $过度参数化。不幸的是,过度参数显着减慢了梯度下降的收敛性,从$ r = r = r = r^{\ star} $的线性速率到$ r> r> r> r> r^{\ star} $,即使$ \ phi $是$ \ phi $强烈凸。在本文中,我们提出了一项廉价的预处理,该预处理恢复了过度参数化的情况下梯度下降回到线性的收敛速率,同时也使在全局最小化器$ x^{\ star} $中可能不良条件变得不可知。
translated by 谷歌翻译
我们研究了学习单个神经元的基本问题,即$ \ mathbf {x} \ mapsto \ sigma(\ mathbf {w} \ cdot \ cdot \ mathbf {x})$单调激活$ \ sigma $ \ sigma: \ mathbb {r} \ mapsto \ mathbb {r} $,相对于$ l_2^2 $ -loss,在存在对抗标签噪声的情况下。具体来说,我们将在$(\ mathbf {x},y)\ in \ mathbb {r}^d \ times \ times \ mathbb {r} $上给我们从$(\ mathbf {x},y)\ on a发行$ d $中给我们标记的示例。 }^\ ast \ in \ mathbb {r}^d $ achieving $ f(\ mathbf {w}^\ ast)= \ epsilon $,其中$ f(\ mathbf {w})= \ m马理bf {e} (\ mathbf {x},y)\ sim d} [(\ sigma(\ mathbf {w} \ cdot \ mathbf {x}) - y)^2] $。学习者的目标是输出假设向量$ \ mathbf {w} $,以使$ f(\ m athbb {w})= c \,\ epsilon $具有高概率,其中$ c> 1 $是通用常数。作为我们的主要贡献,我们为广泛的分布(包括对数 - 循环分布)和激活功能提供有效的恒定因素近似学习者。具体地说,对于各向同性对数凸出分布的类别,我们获得以下重要的推论:对于逻辑激活,我们获得了第一个多项式时间常数因子近似(即使在高斯分布下)。我们的算法具有样品复杂性$ \ widetilde {o}(d/\ epsilon)$,这在多毛体因子中很紧。对于relu激活,我们给出了一个有效的算法,带有样品复杂性$ \ tilde {o}(d \,\ polylog(1/\ epsilon))$。在我们工作之前,最著名的常数因子近似学习者具有样本复杂性$ \ tilde {\ omega}(d/\ epsilon)$。在这两个设置中,我们的算法很简单,在(正规)$ L_2^2 $ -LOSS上执行梯度散发。我们的算法的正确性取决于我们确定的新结构结果,表明(本质上是基本上)基础非凸损失的固定点大约是最佳的。
translated by 谷歌翻译
虽然减少方差方法在解决大规模优化问题方面取得了巨大成功,但其中许多人遭受了累积错误,因此应定期需要进行完整的梯度计算。在本文中,我们提出了一种用于有限的和非convex优化的单环算法(梯度估计器的单环方法),该算法不需要定期刷新梯度估计器,但实现了几乎最佳的梯度复杂性。与现有方法不同,雪橇具有多功能性的优势。 (i)二阶最优性,(ii)PL区域中的指数收敛性,以及(iii)在较小的数据异质性下较小的复杂性。我们通过利用这些有利的特性来构建有效的联合学习算法。我们展示了输出的一阶和二阶最优性,并在PL条件下提供分析。当本地预算足够大,并且客户少(Hessian-)〜异质时,该算法需要较少的通信回合,而不是现有方法,例如FedAvg,脚手架和Mime。我们方法的优势在数值实验中得到了验证。
translated by 谷歌翻译
了解通过随机梯度下降(SGD)训练的神经网络的特性是深度学习理论的核心。在这项工作中,我们采取了平均场景,并考虑通过SGD培训的双层Relu网络,以实现一个非变量正则化回归问题。我们的主要结果是SGD偏向于简单的解决方案:在收敛时,Relu网络实现输入的分段线性图,以及“结”点的数量 - 即,Relu网络估计器的切线变化的点数 - 在两个连续的训练输入之间最多三个。特别地,随着网络的神经元的数量,通过梯度流的解决方案捕获SGD动力学,并且在收敛时,重量的分布方法接近相关的自由能量的独特最小化器,其具有GIBBS形式。我们的主要技术贡献在于分析了这一最小化器产生的估计器:我们表明其第二阶段在各地消失,除了代表“结”要点的一些特定地点。我们还提供了经验证据,即我们的理论预测的不同可能发生与数据点不同的位置的结。
translated by 谷歌翻译
最近对基于置换的SGD的接地结果进行了证实了广泛观察到的现象:随机排列提供更快的收敛性,而不是更换采样。但是,是随机的最佳状态吗?我们表明这一点在很大程度上取决于我们正在优化的功能,并且最佳和随机排放之间的收敛差距可能因指数而异。我们首先表明,对于具有光滑的第二衍生物的1维强凸功能,与随机相比,存在令人指导的收敛性的排列。但是,对于一般强凸的功能,随机排列是最佳的。最后,我们表明,对于二次,强凸的功能,与随机相比,存在易于构建的置换,从而导致加速会聚。我们的研究结果表明,最佳排列的一般收敛性表征不能捕获各个函数类的细微差别,并且可能错误地表明一个人不能比随机更好。
translated by 谷歌翻译
This paper shows that a perturbed form of gradient descent converges to a second-order stationary point in a number iterations which depends only poly-logarithmically on dimension (i.e., it is almost "dimension-free"). The convergence rate of this procedure matches the wellknown convergence rate of gradient descent to first-order stationary points, up to log factors. When all saddle points are non-degenerate, all second-order stationary points are local minima, and our result thus shows that perturbed gradient descent can escape saddle points almost for free.Our results can be directly applied to many machine learning applications, including deep learning. As a particular concrete example of such an application, we show that our results can be used directly to establish sharp global convergence rates for matrix factorization. Our results rely on a novel characterization of the geometry around saddle points, which may be of independent interest to the non-convex optimization community.
translated by 谷歌翻译
Influence diagnostics such as influence functions and approximate maximum influence perturbations are popular in machine learning and in AI domain applications. Influence diagnostics are powerful statistical tools to identify influential datapoints or subsets of datapoints. We establish finite-sample statistical bounds, as well as computational complexity bounds, for influence functions and approximate maximum influence perturbations using efficient inverse-Hessian-vector product implementations. We illustrate our results with generalized linear models and large attention based models on synthetic and real data.
translated by 谷歌翻译
在本文中,我们研究了学习最适合培训数据集的浅层人工神经网络的问题。我们在过度参数化的制度中研究了这个问题,在该制度中,观测值的数量少于模型中的参数数量。我们表明,通过二次激活,训练的优化景观这种浅神经网络具有某些有利的特征,可以使用各种局部搜索启发式方法有效地找到全球最佳模型。该结果适用于输入/输出对的任意培训数据。对于可区分的激活函数,我们还表明,适当初始化的梯度下降以线性速率收敛到全球最佳模型。该结果着重于选择输入的可实现模型。根据高斯分布和标签是根据种植的重量系数生成的。
translated by 谷歌翻译
We introduce SketchySGD, a stochastic quasi-Newton method that uses sketching to approximate the curvature of the loss function. Quasi-Newton methods are among the most effective algorithms in traditional optimization, where they converge much faster than first-order methods such as SGD. However, for contemporary deep learning, quasi-Newton methods are considered inferior to first-order methods like SGD and Adam owing to higher per-iteration complexity and fragility due to inexact gradients. SketchySGD circumvents these issues by a novel combination of subsampling, randomized low-rank approximation, and dynamic regularization. In the convex case, we show SketchySGD with a fixed stepsize converges to a small ball around the optimum at a faster rate than SGD for ill-conditioned problems. In the non-convex case, SketchySGD converges linearly under two additional assumptions, interpolation and the Polyak-Lojaciewicz condition, the latter of which holds with high probability for wide neural networks. Numerical experiments on image and tabular data demonstrate the improved reliability and speed of SketchySGD for deep learning, compared to standard optimizers such as SGD and Adam and existing quasi-Newton methods.
translated by 谷歌翻译