许多方法都存在基于未经调整的Langevin过渡的强大变分分布的方法。其中大多数是使用多种不同方法和技术开发的。不幸的是,缺乏统一的分析和推导使开发新方法和关于现有方法的推理成为具有挑战性的任务。我们解决了这一分析,该分析统一并概括了这些现有技术。主要思想是通过数值模拟阻尼不足的Langevin扩散过程及其时间逆转来增强目标和变异性。这种方法的好处是双重的:它为许多现有方法提供了统一的配方,并简化了新的方法。实际上,使用我们的公式,我们提出了一种结合先前现有算法的优势的新方法。它使用了不足的Langevin过渡和通过分数网络参数参数的强大增强。我们的经验评估表明,我们提出的方法在广泛的任务中始终优于相关基线。
translated by 谷歌翻译
分层模型代表了推理算法的挑战性设置。 MCMC方法难以扩展到具有许多局部变量和观测值的大型模型,并且由于使用简单的变异家族,变异推理(VI)可能无法提供准确的近似值。一些变异方法(例如,重要性加权VI)整合了蒙特卡洛方法以提供更好的准确性,但是这些方法往往不适合层次模型,因为它们不允许亚采样,并且其性能往往会降低高维模型。我们基于分别针对每组局部随机变量的拧紧方法(例如重要性加权)的应用,为分层模型提出了一个新的差异界限家族。我们表明,我们的方法自然允许使用子采样来获得公正的梯度,并且它完全利用了通过在较低维空间中独立应用它们来建立更紧密的下限的方法的力量基线。
translated by 谷歌翻译
引入后二十年多,退火重要性采样(AIS)仍然是边际可能性估计的最有效方法之一。它依赖于一系列分布序列在可聊天的初始分布和利益的目标分布之间插值,我们从大约使用非均匀的马尔可夫链中模拟了分布。为了获得边际可能性的重要性采样估计,AIS引入了扩展的目标分布,以重新持续马尔可夫链提案。尽管已经大量努力通过更改AIS使用的提案分布,通过更改中间分布和相应的马尔可夫内核,但不被评估的问题是AIS使用方便但次优的扩展目标分布。这可能会阻碍其性能。我们在这里利用基于分数的生成建模(SGM)的最新进展来近似与Langevin和Hamiltonian Dynamics离散化相对应的AIS建议的最佳扩展目标分布。我们在许多合成基准分布和变异自动编码器上展示了这些新颖的,可区分的AIS程序。
translated by 谷歌翻译
我们提出了连续重复的退火流传输蒙特卡洛(CRAFT),该方法结合了顺序的蒙特卡洛(SMC)采样器(本身是退火重要性采样的概括)与使用归一化流量的变异推断。直接训练了归一化的流量,可用于使用KL差异进行每个过渡,以在退火温度之间运输。使用归一化流/SMC近似值估算了此优化目标。我们从概念上展示并使用多个经验示例,这些示例可以改善退火流运输蒙特卡洛(Arbel等,2021),并在其上建造,也可以在基于马尔可夫链蒙特卡洛(MCMC)基于基于的随机归一化流(Wu等人。2020)。通过将工艺纳入粒子MCMC中,我们表明,这种学识渊博的采样器可以在具有挑战性的晶格场理论示例中获得令人印象深刻的准确结果。
translated by 谷歌翻译
逐步应用高斯噪声将复杂的数据分布转换为大约高斯。逆转此动态定义了一种生成模型。当前进通知过程由随机微分方程(SDE),Song等人提供。 (2021)证明可以使用分数匹配估计相关反向时间SDE的时间不均匀漂移。这种方法的限制是必须在最终分布到高斯的最终分布必须运行前进时间SDE。相反,解决Schr \“odinger桥问题(SB),即路径空间上的熵正常化的最佳运输问题,产生从有限时间内从数据分布产生样本的扩散。我们存在扩散SB(DSB),原始近似迭代比例拟合(IPF)程序来解决SB问题,并提供理论分析以及生成建模实验。第一个DSB迭代恢复Song等人提出的方法。(2021),使用较短时间的灵活性间隔,随后的DSB迭代减少了前进(RESP。后向)SDE的最终时间边际之间的差异,相对于先前(RESP。数据)分布。除了生成的建模之外,DSB提供了广泛适用的计算最优运输工具流行池算法的连续状态空间模拟(Cuturi,2013)。
translated by 谷歌翻译
标准化流动,扩散归一化流量和变形自动置换器是强大的生成模型。在本文中,我们提供了一个统一的框架来通过马尔可夫链处理这些方法。实际上,我们考虑随机标准化流量作为一对马尔可夫链,满足一些属性,并表明许多用于数据生成的最先进模型适合该框架。马尔可夫链的观点使我们能够将确定性层作为可逆的神经网络和随机层作为大都会加速层,Langevin层和变形自身偏移,以数学上的声音方式。除了具有Langevin层的密度的层,扩散层或变形自身形式,也可以处理与确定性层或大都会加热器层没有密度的层。因此,我们的框架建立了一个有用的数学工具来结合各种方法。
translated by 谷歌翻译
我们考虑模拟扩散桥的问题,即被调节以在两个给定的状态下初始化和终止的扩散过程。扩散桥梁仿真在不同的科学领域具有应用,并对离散观察的扩散的统计推断起着至关重要的作用。众所周知,这是一个有挑战性的问题,在过去的二十年里受到了很多关注。在这项工作中,我们首先表明,如果可以在时间反转无条件的扩散过程,则可以模拟时间反转的扩散桥接过程。我们介绍了一个变分制剂,以了解这一依赖于得分匹配方法以规避诡计的逆转性。然后,我们考虑另一次迭代我们提出的方法,以近似Dooob的$ H $ -transform定义扩散桥过程。由于我们的方法通常适用于潜在的扩散过程的温和假设,因此可以轻松地用于改善现有方法和框架内的提案桥接过程。我们讨论算法考虑和扩展,并呈现一些数值结果。
translated by 谷歌翻译
去核扩散模型最近已成为强大的生成模型类别。它们提供最新的结果,不仅用于无条件模拟,而且还提供了解决在各种反问题中产生的条件模拟问题时。这些模型的一个局限性在于它们在生成时间上是计算密集型的,因为它们需要长期模拟扩散过程。进行无条件的模拟时,Schr \“生成建模的Odinger桥式公式会导致理论上接地的算法缩短生成时间,这与其他提出的加速技术互补。我们将Schr \'Edinger桥式桥式扩展到条件模拟。我们在各种应用程序上演示了这种新颖的方法,包括图像超分辨率,状态空间模型的最佳过滤以及预训练的网络的完善。我们的代码可以在https://github.com/vdeborto/cdsb上找到。
translated by 谷歌翻译
基于分数的生成模型(SGMS)已经证明了显着的合成质量。 SGMS依赖于扩散过程,逐渐将数据逐渐渗透到贸易分布,而生成式模型则学会去噪。除了数据分布本身,这种去噪任务的复杂性是由扩散过程独特地确定的。我们认为当前的SGMS采用过于简单的扩散,导致不必要的复杂的去噪流程,限制了生成的建模性能。根据与统计力学的联系,我们提出了一种新型危及阻尼Langevin扩散(CLD),并表明基于CLD的SGMS实现了优异的性能。 CLD可以被解释为在扩展空间中运行关节扩散,其中辅助变量可以被视为耦合到数据变量的“速度”,如Hamiltonian动态。我们推导了一种用于CLD的小说得分匹配目标,并表明该模型仅需要了解给定数据的速度分布的条件分布的得分函数,而不是直接学习数据的分数。我们还导出了一种新的采样方案,用于从基于CLD的扩散模型有效合成。我们发现CLD在类似的网络架构和采样计算预算中优于综合质量的先前SGM。我们展示我们的CLD的新型采样器显着优于欧拉 - 玛雅山等求解器。我们的框架为基于刻痕的去噪扩散模型提供了新的见解,并且可以随时用于高分辨率图像合成。项目页面和代码:https://nv-tlabs.github.io/cld-sgm。
translated by 谷歌翻译
我们重新审视汉密尔顿随机微分方程(SDES)的理论属性,为贝叶斯后部采样,我们研究了来自数值SDE仿真的两种类型的误差:在数据附带的上下文中,离散化误差和由于噪声渐变估计而导致的错误。我们的主要结果是对迷你批次通过差分操作员分裂镜片影响的新颖分析,修改了先前的文献结果。Hamiltonian SDE的随机分量与梯度噪声分离,我们没有常规假设。这导致识别收敛瓶颈:在考虑迷你批次时,最佳可实现的错误率是$ \ mathcal {o}(\ eta ^ 2)$,带有$ \ eta $是集成器步长。我们的理论结果得到了贝叶斯神经网络各种回归和分类任务的实证研究。
translated by 谷歌翻译
Hamiltonian Monte Carlo (HMC) sampling methods provide a mechanism for defining distant proposals with high acceptance probabilities in a Metropolis-Hastings framework, enabling more efficient exploration of the state space than standard random-walk proposals. The popularity of such methods has grown significantly in recent years. However, a limitation of HMC methods is the required gradient computation for simulation of the Hamiltonian dynamical system-such computation is infeasible in problems involving a large sample size or streaming data. Instead, we must rely on a noisy gradient estimate computed from a subset of the data. In this paper, we explore the properties of such a stochastic gradient HMC approach. Surprisingly, the natural implementation of the stochastic approximation can be arbitrarily bad. To address this problem we introduce a variant that uses second-order Langevin dynamics with a friction term that counteracts the effects of the noisy gradient, maintaining the desired target distribution as the invariant distribution. Results on simulated data validate our theory. We also provide an application of our methods to a classification task using neural networks and to online Bayesian matrix factorization.
translated by 谷歌翻译
退火重要性采样(AIS)是一种流行的算法,用于估计深层生成模型的棘手边际可能性。尽管AIS可以保证为任何一组超参数提供无偏估计,但共同的实现依赖于简单的启发式方法,例如初始和目标分布之间的几何平均桥接分布,这些分布在计算预算有限时会影响估计性性能。由于使用Markov过渡中的大都市磨碎(MH)校正步骤,因此对完全参数AI的优化仍然具有挑战性。我们提出一个具有灵活中间分布的参数AIS过程,并优化桥接分布以使用较少数量的采样步骤。一种重新聚集方法,它允许我们优化分布序列和Markov转换的参数,该参数适用于具有MH校正的大型Markov内核。我们评估了优化AIS的性能,以进行深层生成模型的边际可能性估计,并将其与其他估计器进行比较。
translated by 谷歌翻译
Denoising diffusions are state-of-the-art generative models which exhibit remarkable empirical performance and come with theoretical guarantees. The core idea of these models is to progressively transform the empirical data distribution into a simple Gaussian distribution by adding noise using a diffusion. We obtain new samples whose distribution is close to the data distribution by simulating a "denoising" diffusion approximating the time reversal of this "noising" diffusion. This denoising diffusion relies on approximations of the logarithmic derivatives of the noised data densities, known as scores, obtained using score matching. Such models can be easily extended to perform approximate posterior simulation in high-dimensional scenarios where one can only sample from the prior and simulate synthetic observations from the likelihood. These methods have been primarily developed for data on $\mathbb{R}^d$ while extensions to more general spaces have been developed on a case-by-case basis. We propose here a general framework which not only unifies and generalizes this approach to a wide class of spaces but also leads to an original extension of score matching. We illustrate the resulting class of denoising Markov models on various applications.
translated by 谷歌翻译
我们呈现路径积分采样器〜(PIS),一种新型算法,用于从非正规化概率密度函数中绘制样本。 PIS建立在SCHR \“odinger桥问题上,旨在恢复鉴于其初始分布和终端分布的扩散过程的最可能演变。PIS从初始分布中抽取样品,然后通过SCHR \”传播样本“少剂桥到达终端分布。应用Girsanov定理,通过简单的先前扩散,我们将PIS制定为随机最佳控制问题,其运行成本是根据目标分布选择控制能量和终端成本。通过将控件建模为神经网络,我们建立了一种可以训练结束到底的采样算法。在使用子最优控制时,我们在Wassersein距离方面提供了PIS的采样质量的理论典范。此外,路径积分理论用于计算样本的重要性权重,以补偿由控制器的次级最优性和时间离散化引起的偏差。我们通过关于各种任务的其他启动采样方法进行了实验证明了PIS的优势。
translated by 谷歌翻译
对复杂模型执行精确的贝叶斯推理是计算的难治性的。马尔可夫链蒙特卡罗(MCMC)算法可以提供后部分布的可靠近似,但对于大型数据集和高维模型昂贵。减轻这种复杂性的标准方法包括使用子采样技术或在群集中分发数据。然而,这些方法通常在高维方案中不可靠。我们在此处专注于最近的替代类别的MCMC方案,利用类似于乘客(ADMM)优化算法的庆祝交替方向使用的分裂策略。这些方法似乎提供了凭经验最先进的性能,但其高维层的理论行为目前未知。在本文中,我们提出了一个详细的理论研究,该算法之一称为分裂Gibbs采样器。在规律条件下,我们使用RICCI曲率和耦合思路为此方案建立了明确的收敛速率。我们以数字插图支持我们的理论。
translated by 谷歌翻译
基于得分的扩散模型是一类生成模型,其动力学由将噪声映射到数据中的随机微分方程描述。尽管最近的作品已经开始为这些模型奠定理论基础,但仍缺乏对扩散时间t的作用的分析理解。当前的最佳实践提倡大型T,以确保正向动力学使扩散足够接近已知和简单的噪声分布。但是,对于更好的分数匹配目标和更高的计算效率,应优选较小的t值。从扩散模型的各种解释开始,在这项工作中,我们量化了这一权衡,并提出了一种新方法,通过采用较小的扩散时间来提高培训和采样的质量和效率。实际上,我们展示了如何使用辅助模型来弥合理想和模拟正向动力学之间的间隙,然后进行标准的反向扩散过程。经验结果支持我们的分析;对于图像数据,我们的方法是竞争性W.R.T.根据标准样本质量指标和对数可能的样本。
translated by 谷歌翻译
这是模型选择和假设检测的边缘似然计算的最新介绍和概述。计算概率模型(或常量比率)的常规规定常数是许多统计数据,应用数学,信号处理和机器学习中的许多应用中的基本问题。本文提供了对主题的全面研究。我们突出了不同技术之间的局限性,优势,连接和差异。还描述了使用不正确的前沿的问题和可能的解决方案。通过理论比较和数值实验比较一些最相关的方法。
translated by 谷歌翻译
变分推理是一种强大的范例,用于近似贝叶斯推论,具有许多吸引人的属性,包括支持模型学习和数据分配。通过对比MCMC方法,如Hamiltonian Monte Carlo不共享这些属性,但由于与参数方法相反,因此仍然有吸引力,因此MCMC是无偏见的。由于这些原因,研究人员试图将两类算法的优势结合起来,最近的方法更接近在实践中实现这一愿景。然而,支持这些混合方法中的数据分配可能是一个挑战,通过引入可以与其他变分参数共同学习的替代可能性来解决的缺点。从理论上,理论上我们认为所产生的算法允许用户在推理保真度和计算成本之间进行直观的折衷。在一个广泛的经验比较中,我们表明我们的方法在实践中表现良好,并且它非常适合在概率编程框架中的黑匣子推断。
translated by 谷歌翻译
在这项工作中,我们考虑了对具有非负LEBESGUE密度的概率度量的预期估计,并且是最新的正常化常数。我们专注于通过失业不足的Langevin Dynamics开发一种无偏见的方法,由于统计和机器学习的应用,事实证明,该动态已被证明很受欢迎。特别是连续时间,可以构建动力学以承认感兴趣的概率作为固定度量。我们基于双随机估计而开发了一种新颖的方案,该方案仅需要访问动力学的时间限制版本,并且是实用算法中使用的动力学版本。我们证明,根据标准假设,我们的估计器具有有限的差异,并且具有有限的预期成本,或者具有有限的成本具有很高的可能性。为了说明我们的理论发现,我们提供了验证我们理论的数值实验,其中包括贝叶斯统计和统计物理学的挑战示例。
translated by 谷歌翻译
Leveraging well-established MCMC strategies, we propose MCMC-interactive variational inference (MIVI) to not only estimate the posterior in a time constrained manner, but also facilitate the design of MCMC transitions. Constructing a variational distribution followed by a short Markov chain that has parameters to learn, MIVI takes advantage of the complementary properties of variational inference and MCMC to encourage mutual improvement. On one hand, with the variational distribution locating high posterior density regions, the Markov chain is optimized within the variational inference framework to efficiently target the posterior despite a small number of transitions. On the other hand, the optimized Markov chain with considerable flexibility guides the variational distribution towards the posterior and alleviates its underestimation of uncertainty. Furthermore, we prove the optimized Markov chain in MIVI admits extrapolation, which means its marginal distribution gets closer to the true posterior as the chain grows. Therefore, the Markov chain can be used separately as an efficient MCMC scheme. Experiments show that MIVI not only accurately and efficiently approximates the posteriors but also facilitates designs of stochastic gradient MCMC and Gibbs sampling transitions.
translated by 谷歌翻译