自主驾驶的最新作品已广泛采用了鸟眼视图(BEV)语义图作为世界的中间表示。这些BEV地图的在线预测涉及非平凡操作,例如多摄像机数据提取以及融合和投影到常见的顶级网格中。这通常是通过易易错的几何操作(例如,单眼深度估计的同构图或反射)或BEV中图像像素和像素(例如,具有MLP或注意力)之间的昂贵直接密集映射来完成。在这项工作中,我们提出了“ Lara”,这是一种有效的编码器编码器,基于变压器的模型,用于从多个摄像机中进行车辆语义分割。我们的方法使用交叉注意的系统将信息通过多个传感器汇总为紧凑而丰富的潜在表示。这些潜在的表示在通过一系列自我发场块处理后,在BEV空间中进行了第二次交叉注意。我们证明,我们的模型在Nuscenes上的表现优于使用变压器的最佳先前作品。
translated by 谷歌翻译
以视觉为中心的BEV感知由于其固有的优点,最近受到行业和学术界的关注,包括展示世界自然代表和融合友好。随着深度学习的快速发展,已经提出了许多方法来解决以视觉为中心的BEV感知。但是,最近没有针对这个小说和不断发展的研究领域的调查。为了刺激其未来的研究,本文对以视觉为中心的BEV感知及其扩展进行了全面调查。它收集并组织了最近的知识,并对常用算法进行了系统的综述和摘要。它还为几项BEV感知任务提供了深入的分析和比较结果,从而促进了未来作品的比较并激发了未来的研究方向。此外,还讨论了经验实现细节并证明有利于相关算法的开发。
translated by 谷歌翻译
鸟眼视图(BEV)语义分割对于具有强大的空间表示能力的自动驾驶至关重要。由于空间间隙而从单眼图像中估算BEV语义图是一项挑战,因为这是隐含的,以实现均可实现透视到bev-bev的转换和分割。我们提出了一个新型的两阶段几何形状的基于GITNET的基于基于的转换框架,由(i)几何引导的预先对准和(ii)基于射线的变压器组成。在第一阶段,我们将BEV分割分解为透视图的图像分割和基于几何的基于几何映射,并通过将BEV语义标签投影到图像平面上,以明确的监督,以学习可见性吸引的特征和可学习的几何形状,以转化为BEV空间。其次,基于射线的变压器将预先一致的粗细BEV特征进一步变形,以考虑可见性知识。 Gitnet在具有挑战性的Nuscenes和Argoverse数据集上实现了领先的表现。
translated by 谷歌翻译
在这项工作中,我们为基于视觉的不均衡的BEV表示学习提出了PolarBev。为了适应摄像机成像的预先处理效果,我们将BEV空间横向和辐射上栅格化,并引入极性嵌入分解,以模拟极性网格之间的关联。极性网格被重新排列到类似阵列的常规表示,以进行有效处理。此外,为了确定2到3D对应关系,我们根据假设平面迭代更新BEV表面,并采用基于高度的特征转换。PolarBev在单个2080TI GPU上保持实时推理速度,并且在BEV语义分割和BEV实例分割方面都优于其他方法。展示彻底消融以验证设计。该代码将在\ url {https://github.com/superz-liu/polarbev}上发布。
translated by 谷歌翻译
Bird's Eye View(BEV)语义分割在自动驾驶的空间传感中起着至关重要的作用。尽管最近的文献在BEV MAP的理解上取得了重大进展,但它们都是基于基于摄像头的系统,这些系统难以处理遮挡并检测复杂的交通场景中的遥远对象。车辆到车辆(V2V)通信技术使自动驾驶汽车能够共享感应信息,与单代理系统相比,可以显着改善感知性能和范围。在本文中,我们提出了Cobevt,这是可以合作生成BEV MAP预测的第一个通用多代理多机构感知框架。为了有效地从基础变压器体系结构中的多视图和多代理数据融合相机功能,我们设计了融合的轴向注意力或传真模块,可以捕获跨视图和代理的局部和全局空间交互。 V2V感知数据集OPV2V的广泛实验表明,COBEVT实现了合作BEV语义分段的最新性能。此外,COBEVT被证明可以推广到其他任务,包括1)具有单代理多摄像机的BEV分割和2)具有多代理激光雷达系统的3D对象检测,并实现具有实时性能的最新性能时间推理速度。
translated by 谷歌翻译
自动驾驶中的3D对象检测旨在推理3D世界中感兴趣的对象的“什么”和“在哪里”。遵循先前2D对象检测的传统智慧,现有方法通常采用垂直轴的规范笛卡尔坐标系。但是,我们共轭这并不符合自我汽车的视角的本质,因为每个板载摄像头都以激进(非垂体)轴的成像几何形状感知到了楔形的楔形世界。因此,在本文中,我们主张对极性坐标系的开发,并提出一个新的极性变压器(极性形式),以在Bird's-eye-View(BEV)中更准确的3D对象检测(BEV),仅作为输入仅作为输入的多相机2D图像。具体而言,我们设计了一个基于交叉注意的极性检测头,而无需限制输入结构的形状以处理不规则的极性网格。为了解决沿极性距离维度的不受约束的物体量表变化,我们进一步引入了多个层状表示策略。结果,我们的模型可以通过参与序列到序列时尚的相应图像观察来充分利用极性表示,但要受几何约束。对Nuscenes数据集进行的彻底实验表明,我们的极性形式的表现明显优于最先进的3D对象检测替代方案,并且在BEV语义分割任务上产生了竞争性能。
translated by 谷歌翻译
3D视觉感知任务,包括基于多相机图像的3D检测和MAP分割,对于自主驾驶系统至关重要。在这项工作中,我们提出了一个称为BeVformer的新框架,该框架以时空变压器学习统一的BEV表示,以支持多个自主驾驶感知任务。简而言之,Bevormer通过通过预定义的网格形BEV查询与空间和时间空间进行交互来利用空间和时间信息。为了汇总空间信息,我们设计了空间交叉注意,每个BEV查询都从相机视图中从感兴趣的区域提取了空间特征。对于时间信息,我们提出暂时的自我注意力,以将历史bev信息偶尔融合。我们的方法在Nuscenes \ texttt {test} set上,以NDS度量为单位达到了新的最新56.9 \%,该设置比以前的最佳艺术高9.0分,并且与基于LIDAR的盆地的性能相当。我们进一步表明,BeVormer明显提高了速度估计的准确性和在低可见性条件下对象的回忆。该代码可在\ url {https://github.com/zhiqi-li/bevformer}中获得。
translated by 谷歌翻译
一个自动驾驶感知模型旨在将3D语义表示从多个相机集体提取到自我汽车的鸟类视图(BEV)坐标框架中,以使下游规划师接地。现有的感知方法通常依赖于整个场景的容易出错的深度估计,或者学习稀疏的虚拟3D表示没有目标几何结构,这两者在性能和/或能力上仍然有限。在本文中,我们介绍了一种新颖的端到端体系结构,用于自我3D表示从任意数量的无限摄像机视图中学习。受射线追踪原理的启发,我们将“想象眼睛”的两极分化网格设计为可学习的自我3D表示,并通过适应性注意机制与3D到2D投影一起以自适应注意机制的形式制定学习过程。至关重要的是,该公式允许从2D图像中提取丰富的3D表示,而无需任何深度监督,并且内置的几何结构一致W.R.T. bev。尽管具有简单性和多功能性,但对标准BEV视觉任务(例如,基于摄像机的3D对象检测和BEV细分)进行了广泛的实验表明,我们的模型的表现均优于所有最新替代方案,从多任务学习。
translated by 谷歌翻译
Accurate localization ability is fundamental in autonomous driving. Traditional visual localization frameworks approach the semantic map-matching problem with geometric models, which rely on complex parameter tuning and thus hinder large-scale deployment. In this paper, we propose BEV-Locator: an end-to-end visual semantic localization neural network using multi-view camera images. Specifically, a visual BEV (Birds-Eye-View) encoder extracts and flattens the multi-view images into BEV space. While the semantic map features are structurally embedded as map queries sequence. Then a cross-model transformer associates the BEV features and semantic map queries. The localization information of ego-car is recursively queried out by cross-attention modules. Finally, the ego pose can be inferred by decoding the transformer outputs. We evaluate the proposed method in large-scale nuScenes and Qcraft datasets. The experimental results show that the BEV-locator is capable to estimate the vehicle poses under versatile scenarios, which effectively associates the cross-model information from multi-view images and global semantic maps. The experiments report satisfactory accuracy with mean absolute errors of 0.052m, 0.135m and 0.251$^\circ$ in lateral, longitudinal translation and heading angle degree.
translated by 谷歌翻译
在鸟眼中学习强大的表现(BEV),以进行感知任务,这是趋势和吸引行业和学术界的广泛关注。大多数自动驾驶算法的常规方法在正面或透视视图中执行检测,细分,跟踪等。随着传感器配置变得越来越复杂,从不同的传感器中集成了多源信息,并在统一视图中代表功能至关重要。 BEV感知继承了几个优势,因为代表BEV中的周围场景是直观和融合友好的。对于BEV中的代表对象,对于随后的模块,如计划和/或控制是最可取的。 BEV感知的核心问题在于(a)如何通过从透视视图到BEV来通过视图转换来重建丢失的3D信息; (b)如何在BEV网格中获取地面真理注释; (c)如何制定管道以合并来自不同来源和视图的特征; (d)如何适应和概括算法作为传感器配置在不同情况下各不相同。在这项调查中,我们回顾了有关BEV感知的最新工作,并对不同解决方案进行了深入的分析。此外,还描述了该行业的BEV方法的几种系统设计。此外,我们推出了一套完整的实用指南,以提高BEV感知任务的性能,包括相机,激光雷达和融合输入。最后,我们指出了该领域的未来研究指示。我们希望该报告能阐明社区,并鼓励对BEV感知的更多研究。我们保留一个活跃的存储库来收集最新的工作,并在https://github.com/openperceptionx/bevperception-survey-recipe上提供一包技巧的工具箱。
translated by 谷歌翻译
为不依赖LiDAR的自动驾驶汽车建造3D感知系统是一个关键的研究问题,因为与摄像机和其他传感器相比,LiDar系统的费用很高。当前方法使用从车辆周围的摄像机收集的多视图RGB数据,并从透视图像到2D接地平面的神经“升力”特征,从而产生“鸟类的眼光”(BEV)的特征代表车辆周围的3D空间。最近的研究重点是将功能从图像提升到BEV平面的方式。相反,我们提出了一个简单的基线模型,其中“提升”步骤简单地平均所有投影图像位置的特征,并发现它的表现优于BEV车辆分割中当前最新的。我们的消融表明,批处理大小,数据增强和输入分辨率在性能中起着很大的作用。此外,我们重新考虑了雷达输入的效用,雷达输入的实用性以前被最近的作品忽略或没有忽略。借助简单的RGB-radar融合模块,我们获得了相当大的性能提升,从而接近了启用激光雷达系统的精度。
translated by 谷歌翻译
伯德眼景(BEV)中的语义细分是自动驾驶的重要任务。尽管这项任务吸引了大量的研究工作,但灵活应对在自动驾驶汽车上配备的任意(单个或多个)摄像头传感器仍然具有挑战性。在本文中,我们介绍了BEVSEGFORMER,这是一种有效的基于变压器的方法,用于从任意摄像机钻机中进行BEV语义分割。具体而言,我们的方法首先编码带有共享骨架的任意摄像机的图像功能。然后,这些图像功能通过基于变压器的编码器增强。此外,我们引入了BEV变压器解码器模块以解析BEV语义分割结果。有效的多相机可变形注意单元旨在进行BEV-to-to-image视图转换。最后,查询是根据BEV中网格的布局重塑的,并以监督方式进行了更大的采样以产生语义分割结果。我们在公共Nuscenes数据集和自收集的数据集上评估了所提出的算法。实验结果表明,我们的方法在任意摄像机钻机上实现了BEV语义分割的有希望的性能。我们还通过消融研究证明了每个组件的有效性。
translated by 谷歌翻译
从周围的视角摄像机中学习鸟类视图(BEV)表示对于自动驾驶非常重要。在这项工作中,我们提出了一种几何学引导的内核变压器(GKT),这是一种新颖的2到BEV表示的学习机制。 GKT利用几何先验来指导变压器专注于判别区域,并展开内核特征以生成BEV表示。对于快速推断,我们进一步引入了查找表(LUT)索引方法,以消除在运行时消除相机的校准参数。 GKT在2080TI GPU上的3090 GPU / $ 45.6 $ fps上的价格为$ 72.3 $ fps,并且对摄像机偏差和预定义的BEV高度非常强大。 GKT在Nuscenes Val设置上实现了最新的实时细分结果,即38.0 miou(1亿$ \ times以1亿美元的感知范围,分辨率为0.50万)。鉴于效率,有效性和鲁棒性,GKT在自动驾驶场景中具有巨大的实践价值,尤其是对于实时运行系统。代码和模型将在\ url {https://github.com/hustvl/gkt}上提供。
translated by 谷歌翻译
最近的3D Vision进步已经受到包括几何诱导偏见的专业架构的推动。在本文中,我们使用域名可靠架构来解决3D重建,并将与模型的额外输入直接注入相同类型的电感偏差。这种方法使得可以应用现有的一般模型,例如感知的富域,而无需架构更改,同时保持定制模型的数据效率。特别是我们研究如何将摄像机,投影射线发射和末端几何形式作为模型输入进行编码,并在多个基准上展示竞争性的多视图深度估计性能。
translated by 谷歌翻译
In this paper, we propose a novel 3D object detector that can exploit both LIDAR as well as cameras to perform very accurate localization. Towards this goal, we design an end-to-end learnable architecture that exploits continuous convolutions to fuse image and LIDAR feature maps at different levels of resolution. Our proposed continuous fusion layer encode both discrete-state image features as well as continuous geometric information. This enables us to design a novel, reliable and efficient end-to-end learnable 3D object detector based on multiple sensors. Our experimental evaluation on both KITTI as well as a large scale 3D object detection benchmark shows significant improvements over the state of the art.
translated by 谷歌翻译
多传感器融合对于准确可靠的自主驾驶系统至关重要。最近的方法基于点级融合:通过相机功能增强激光雷达点云。但是,摄像头投影抛弃了相机功能的语义密度,阻碍了此类方法的有效性,尤其是对于面向语义的任务(例如3D场景分割)。在本文中,我们用BevFusion打破了这个根深蒂固的惯例,这是一个有效且通用的多任务多任务融合框架。它统一了共享鸟类视图(BEV)表示空间中的多模式特征,该空间很好地保留了几何信息和语义信息。为了实现这一目标,我们通过优化的BEV池进行诊断和提高视图转换中的钥匙效率瓶颈,从而将延迟降低了40倍以上。 BevFusion从根本上是任务不合时宜的,并且无缝支持不同的3D感知任务,几乎没有建筑变化。它在Nuscenes上建立了新的最新技术,在3D对象检测上获得了1.3%的MAP和NDS,而BEV MAP分段中的MIOU高13.6%,计算成本较低1.9倍。可以在https://github.com/mit-han-lab/bevfusion上获得复制我们结果的代码。
translated by 谷歌翻译
Autonomous driving requires efficient reasoning about the location and appearance of the different agents in the scene, which aids in downstream tasks such as object detection, object tracking, and path planning. The past few years have witnessed a surge in approaches that combine the different taskbased modules of the classic self-driving stack into an End-toEnd(E2E) trainable learning system. These approaches replace perception, prediction, and sensor fusion modules with a single contiguous module with shared latent space embedding, from which one extracts a human-interpretable representation of the scene. One of the most popular representations is the Birds-eye View (BEV), which expresses the location of different traffic participants in the ego vehicle frame from a top-down view. However, a BEV does not capture the chromatic appearance information of the participants. To overcome this limitation, we propose a novel representation that captures various traffic participants appearance and occupancy information from an array of monocular cameras covering 360 deg field of view (FOV). We use a learned image embedding of all camera images to generate a BEV of the scene at any instant that captures both appearance and occupancy of the scene, which can aid in downstream tasks such as object tracking and executing language-based commands. We test the efficacy of our approach on synthetic dataset generated from CARLA. The code, data set, and results can be found at https://rebrand.ly/APP OCC-results.
translated by 谷歌翻译
现代的3D计算机视觉利用学习来增强几何推理,将图像数据映射到经典结构,例如成本量或外观限制,以改善匹配。这些体系结构根据特定问题进行了专门化,因此需要进行大量任务的调整,通常会导致域的泛化性能差。最近,通才变压器架构通过编码几何学先验作为输入而不是执行约束,在诸如光流和深度估计等任务中取得了令人印象深刻的结果。在本文中,我们扩展了这一想法,并建议学习一个隐式,多视图一致的场景表示,并在增加视图多样性之前引入了一系列3D数据增强技术作为几何感应。我们还表明,引入视图合成作为辅助任务进一步改善了深度估计。我们的深度磁场网络(定义)实现了最新的目的,可以实现立体声和视频深度估计,而无需明确的几何约束,并通过广泛的边距改善了零局部域的概括。
translated by 谷歌翻译
从预期的观点(例如范围视图(RV)和Bird's-eye-view(BEV))进行了云云语义细分。不同的视图捕获了点云的不同信息,因此彼此互补。但是,最近基于投影的点云语义分割方法通常会利用一种香草后期的融合策略来预测不同观点,因此未能从表示学习过程中从几何学角度探索互补信息。在本文中,我们引入了一个几何流动网络(GFNET),以探索以融合方式对准不同视图之间的几何对应关系。具体而言,我们设计了一个新颖的几何流量模块(GFM),以双向对齐并根据端到端学习方案下的几何关系跨不同观点传播互补信息。我们对两个广泛使用的基准数据集(Semantickitti和Nuscenes)进行了广泛的实验,以证明我们的GFNET对基于项目的点云语义分割的有效性。具体而言,GFNET不仅显着提高了每个单独观点的性能,而且还可以在所有基于投影的模型中取得最新的结果。代码可在\ url {https://github.com/haibo-qiu/gfnet}中获得。
translated by 谷歌翻译
在过去的几年中,自动驾驶的感知系统在其表现方面取得了重大进步。但是,这些系统在极端天气条件下努力表现出稳健性,因为在这些条件下,传感器和相机等传感器套件中的主要传感器都会下降。为了解决此问题,摄像机雷达融合系统为所有可靠的高质量感知提供了独特的机会。相机提供丰富的语义信息,而雷达可以通过遮挡和在所有天气条件下工作。在这项工作中,我们表明,当摄像机输入降解时,最新的融合方法的性能很差,这实际上导致失去了他们设定的全天可靠性。与这些方法相反,我们提出了一种新方法RadSegnet,该方法使用了独立信息提取的新设计理念,并在所有情况下都可以在所有情况下真正实现可靠性,包括遮挡和不利天气。我们在基准ASTYX数据集上开发并验证了我们的系统,并在辐射数据集上进一步验证了这些结果。与最先进的方法相比,Radsegnet在ASTYX上提高了27%,辐射增长了41.46%,平均精度得分,并且在不利天气条件下的性能明显更好
translated by 谷歌翻译