很少有细粒度的学习旨在将查询图像分类为具有细粒度差异的一组支持类别之一。尽管学习不同对象通过深神网络的局部差异取得了成功,但如何在基于变压器的架构中利用查询支持的跨图像对象语义关系在几个摄像机的细粒度场景中仍未得到充分探索。在这项工作中,我们提出了一个基于变压器的双螺旋模型,即HelixFormer,以双向和对称方式实现跨图像对象语义挖掘。 HelixFormer由两个步骤组成:1)跨不同分支的关系挖掘过程(RMP),以及2)在每个分支中表示增强过程(REP)。通过设计的RMP,每个分支都可以使用来自另一个分支的信息提取细粒对象级跨图义语义关系图(CSRMS),从而确保在语义相关的本地对象区域中更好地跨图像相互作用。此外,借助CSRMS,开发的REP可以增强每个分支中发现的与语义相关的局部区域的提取特征,从而增强模型区分细粒物体的细微特征差异的能力。在五个公共细粒基准上进行的广泛实验表明,螺旋形式可以有效地增强识别细颗粒物体的跨图像对象语义关系匹配,从而在1次以下的大多数先进方法中实现更好的性能,并且5击场景。我们的代码可在以下网址找到:https://github.com/jiakangyuan/helixformer
translated by 谷歌翻译
传统的细颗粒图像分类通常依赖于带注释的地面真相的大规模训练样本。但是,某些子类别在实际应用中可能几乎没有可用的样本。在本文中,我们建议使用多频邻域(MFN)和双交叉调制(DCM)提出一个新颖的几弹性细颗粒图像分类网络(FICNET)。采用模块MFN来捕获空间域和频域中的信息。然后,提取自相似性和多频成分以产生多频结构表示。 DCM使用分别考虑全球环境信息和类别之间的微妙关系来调节嵌入过程。针对两个少量任务的三个细粒基准数据集进行的综合实验验证了FICNET与最先进的方法相比具有出色的性能。特别是,在两个数据集“ Caltech-UCSD鸟”和“ Stanford Cars”上进行的实验分别可以获得分类精度93.17 \%和95.36 \%。它们甚至高于一般的细粒图像分类方法可以实现的。
translated by 谷歌翻译
旨在使用非常有限的样本识别看不见的类的几个射击分类吸引了越来越多的关注。通常,它被称为公制学习问题。几乎没有射击分类的核心问题是如何学习(1)支持和查询集中图像的一致表示以及(2)在支持和查询集之间的图像的有效度量学习。在本文中,我们表明,这两个挑战可以通过统一的查询支持变压器(QSFormer)模型同时建模。具体而言,提出的QSFormer涉及全局查询支持样品变压器(SampleFormer)分支和局部补丁变压器(PatchFormer)学习分支。 SampleFormer旨在捕获样品在支持和查询集以进行图像表示方面的依赖性。它采用编码器,解码器和交叉注意力,分别对几个射击分类任务的支持,查询(图像)表示和度量学习进行建模。同样,作为全球学习分支的补充,我们采用了局部贴片变压器,通过捕获本地图像贴片的长距离依赖性来提取每个图像样本的结构表示。此外,还提出了一种新型的跨尺度交互式提取器(CIFE)来提取和融合多尺度CNN特征,作为建议的少量学习方法的有效骨干模块。所有模块都集成到统一的框架中,并以端到端的方式进行了训练。在四个流行数据集上进行的广泛实验证明了所提出的QSFormer的有效性和优势。
translated by 谷歌翻译
识别诸如眼睛和喙之类的判别细节对于区分细粒度的班级非常重要,因为它们的总体外观相似。在这方面,我们介绍了任务差异最大化(TDM),这是一个简单的模块,用于细颗粒的几个射击分类。我们的目标是通过强调编码课堂不同信息的渠道来定位班级判别区域。具体而言,TDM基于两个新颖的组件学习特定于任务的通道权重:支持注意模块(SAM)和查询注意模块(QAM)。 SAM产生支持权重,以表示每个类别的频道判别能力。尽管如此,由于SAM基本上仅基于标记的支持集,因此它可能容易受到此类支持集的偏见。因此,我们提出了QAM,通过产生查询权重来补充SAM,该查询权重使给定查询图像的对象相关的通道更加重量。通过组合这两个权重,定义了特定于类的任务通道权重。然后将权重应用以产生任务自适应特征地图,更多地关注判别细节。我们的实验证实了TDM的有效性及其互补益处,并在细粒度的几乎没有分类中使用了先前的方法。
translated by 谷歌翻译
细粒度的视觉分类(FGVC)旨在识别类似下属类别的对象,这对于人类的准确自动识别需求而言是挑战性和实用性的。大多数FGVC方法都集中在判别区域开采的注意力机制研究上,同时忽略了它们的相互依赖性和组成的整体对象结构,这对于模型的判别信息本地化和理解能力至关重要。为了解决上述限制,我们建议结构信息建模变压器(SIM-TRANS)将对象结构信息纳入变压器,以增强判别性表示学习,以包含外观信息和结构信息。具体而言,我们将图像编码为一系列贴片令牌,并使用两个精心设计的模块构建强大的视觉变压器框架:(i)提出了结构信息学习(SIL)模块以挖掘出在该模块中的空间上下文关系,对象范围借助变压器的自我发项权重,进一步注入导入结构信息的模型; (ii)引入了多级特征增强(MFB)模块,以利用类中多级特征和对比度学习的互补性,以增强功能鲁棒性,以获得准确的识别。提出的两个模块具有轻加权,可以插入任何变压器网络并轻松地端到端训练,这仅取决于视觉变压器本身带来的注意力重量。广泛的实验和分析表明,所提出的SIM-TRANS在细粒度的视觉分类基准上实现了最先进的性能。该代码可在https://github.com/pku-icst-mipl/sim-trans_acmmm2022上获得。
translated by 谷歌翻译
很少有射击对象检测(FSOD),目的是使用很少的培训示例来检测新颖的对象,最近对社区引起了极大的研究兴趣。基于度量学习的方法已证明使用基于两分支的暹罗网络对此任务有效,并计算图像区域之间的相似性和几乎没有射击示例以进行检测。但是,在以前的工作中,两个分支之间的相互作用仅在检测头中受到限制,而将其余数百个层留在单独的特征提取中。受到有关视觉变压器和视觉变压器的最新工作的启发,我们通过将交叉转换器纳入功能骨干和检测头中,提出了一种新颖的FSOD基于跨变速器的模型(FCT)。提出了不对称批次的交叉注意,以从不同批次大小的两个分支中汇总关键信息。我们的模型可以通过引入多级交互来改善两个分支之间的几个相似性学习。对Pascal VOC和MSCOCO FSOD基准测试的全面实验证明了我们模型的有效性。
translated by 谷歌翻译
很少有学习的学习(FSL)旨在学习一个可以轻松适应新颖课程的分类器,只有几个标签的示例,限制数据使这项任务挑战深度学习。基于量子指标的方法已实现了有希望的表现基于图像级的功能。但是,这些全球特征忽略了丰富的本地和结构信息,这些信息在可见的和看不见的类之间都是可以转移和一致的。认知科学的某些研究认为,人类可以识别出具有学识渊博的新颖类。我们希望挖掘出来可以从基础类别转移和判别性表示,并采用它们以识别新的课程。建立情节训练机制,我们提出了一个原始的采矿和推理网络(PMRN),以端到端的方式学习原始感知的表示,以进行度量。基于基于FSL模型。我们首先添加自学辅助任务,迫使功能提取器学习与原始词相对应的电视模式。为了进一步挖掘并产生可转移的原始感知表示形式,我们设计了一个自适应通道组(ACG)模块,以通过增强信息通道图的同时抑制无用的通道图,从而从对象嵌入中合成一组视觉原语。基于学到的原始功能,提出了一个语义相关推理(SCR)模块来捕获它们之间的内部关系。在本文中,我们了解原始词的特定于任务的重要性,并基于特定于任务的注意力功能进行原始级别的度量。广泛的实验表明,我们的方法在六个标准基准下实现了最先进的结果。
translated by 谷歌翻译
很少有视觉识别是指从一些标记实例中识别新颖的视觉概念。通过将查询表示形式与类表征进行比较以预测查询实例的类别,许多少数射击的视觉识别方法采用了基于公制的元学习范式。但是,当前基于度量的方法通常平等地对待所有实例,因此通常会获得有偏见的类表示,考虑到并非所有实例在总结了类级表示的实例级表示时都同样重要。例如,某些实例可能包含无代表性的信息,例如过多的背景和无关概念的信息,这使结果偏差。为了解决上述问题,我们提出了一个新型的基于公制的元学习框架,称为实例自适应类别表示网络(ICRL-net),以进行几次视觉识别。具体而言,我们开发了一个自适应实例重新平衡网络,具有在生成班级表示,通过学习和分配自适应权重的不同实例中的自适应权重时,根据其在相应类的支持集中的相对意义来解决偏见的表示问题。此外,我们设计了改进的双线性实例表示,并结合了两个新型的结构损失,即,阶层内实例聚类损失和阶层间表示区分损失,以进一步调节实例重估过程并完善类表示。我们对四个通常采用的几个基准测试:Miniimagenet,Tieredimagenet,Cifar-FS和FC100数据集进行了广泛的实验。与最先进的方法相比,实验结果证明了我们的ICRL-NET的优势。
translated by 谷歌翻译
从有限的数据学习是一个具有挑战性的任务,因为数据的稀缺导致训练型模型的较差。经典的全局汇总表示可能会失去有用的本地信息。最近,许多射击学习方法通​​过使用深度描述符和学习像素级度量来解决这一挑战。但是,使用深描述符作为特征表示可能丢失图像的上下文信息。这些方法中的大多数方法独立地处理支持集中的每个类,这不能充分利用鉴别性信息和特定于特定的嵌入。在本文中,我们提出了一种名为稀疏空间变压器(SSFormers)的新型变压器的神经网络架构,可以找到任务相关的功能并抑制任务无关的功能。具体地,我们首先将每个输入图像划分为不同大小的几个图像斑块,以获得密集的局部特征。这些功能在表达本地信息时保留上下文信息。然后,提出了一种稀疏的空间变压器层以在查询图像和整个支持集之间找到空间对应关系,以选择任务相关的图像斑块并抑制任务 - 无关的图像斑块。最后,我们建议使用图像补丁匹配模块来计算密集的本地表示之间的距离,从而确定查询图像属于支持集中的哪个类别。广泛的少量学习基准测试表明,我们的方法实现了最先进的性能。
translated by 谷歌翻译
旨在识别来自子类别的对象的细粒度视觉分类(FGVC)是一个非常具有挑战性的任务,因为固有的微妙级别差异。大多数现有工程主要通过重用骨干网络来提取检测到的歧视区域的特征来解决这个问题。然而,该策略不可避免地使管道复杂化并推动所提出的区域,其中大多数物体的大多数部分未能定位真正重要的部分。最近,视觉变压器(VIT)在传统的分类任务中表现出其强大的表现。变压器的自我关注机制将每个补丁令牌链接到分类令牌。在这项工作中,我们首先评估vit框架在细粒度识别环境中的有效性。然后,由于注意力的强度,可以直观地被认为是令牌重要性的指标,我们进一步提出了一种新颖的部分选择模块,可以应用于我们整合变压器的所有原始注意力的变压器架构进入注意地图,用于指导网络以有效,准确地选择鉴别的图像斑块并计算它们的关系。应用对比损失来扩大混淆类的特征表示之间的距离。我们将基于增强的变压器的模型Transfg命名,并通过在我们实现最先进的绩效的五个流行的细粒度基准测试中进行实验来展示它的价值。提出了更好地理解模型的定性结果。
translated by 谷歌翻译
The main challenge for fine-grained few-shot image classification is to learn feature representations with higher inter-class and lower intra-class variations, with a mere few labelled samples. Conventional few-shot learning methods however cannot be naively adopted for this fine-grained setting -- a quick pilot study reveals that they in fact push for the opposite (i.e., lower inter-class variations and higher intra-class variations). To alleviate this problem, prior works predominately use a support set to reconstruct the query image and then utilize metric learning to determine its category. Upon careful inspection, we further reveal that such unidirectional reconstruction methods only help to increase inter-class variations and are not effective in tackling intra-class variations. In this paper, we for the first time introduce a bi-reconstruction mechanism that can simultaneously accommodate for inter-class and intra-class variations. In addition to using the support set to reconstruct the query set for increasing inter-class variations, we further use the query set to reconstruct the support set for reducing intra-class variations. This design effectively helps the model to explore more subtle and discriminative features which is key for the fine-grained problem in hand. Furthermore, we also construct a self-reconstruction module to work alongside the bi-directional module to make the features even more discriminative. Experimental results on three widely used fine-grained image classification datasets consistently show considerable improvements compared with other methods. Codes are available at: https://github.com/PRIS-CV/Bi-FRN.
translated by 谷歌翻译
细粒度的图像识别是具有挑战性的,因为鉴别性线索通常是碎片化的,无论是来自单个图像还是多个图像。尽管有重要的改进,但大多数现有方法仍然专注于从单个图像中的最辨别部分,忽略其他地区的信息细节,缺乏从其他相关图像的线索考虑。在本文中,我们从新的角度分析了微粒图像识别的困难,并提出了一种具有峰值抑制模块和知识引导模块的变压器架构,其尊重单个图像中辨别特征的多样化和鉴别线索的聚合在多个图像中。具体地,峰值抑制模块首先利用线性投影来将输入图像转换为顺序令牌。然后,它基于变压器编码器产生的注意响应来阻止令牌。该模块因特征学习过程中的最辨别部分而受到惩罚,因此,提高了忽视区域的信息利用。知识引导模块将从峰值抑制模块生成的基于图像的表示与被学习的知识嵌入集进行比较,以获得知识响应系数。之后,使用响应系数作为分类分数,将知识学习形式形式化为分类问题。在训练期间更新知识嵌入和基于图像的表示,以便知识嵌入包括不同图像的鉴别线索。最后,我们将所获得的知识嵌入纳入基于形象的表示,作为全面的表示,导致性能显着提高。对六个流行数据集的广泛评估证明了所提出的方法的优势。
translated by 谷歌翻译
Few-shot classification aims to recognize unlabeled samples from unseen classes given only few labeled samples. The unseen classes and low-data problem make few-shot classification very challenging. Many existing approaches extracted features from labeled and unlabeled samples independently, as a result, the features are not discriminative enough. In this work, we propose a novel Cross Attention Network to address the challenging problems in few-shot classification. Firstly, Cross Attention Module is introduced to deal with the problem of unseen classes. The module generates cross attention maps for each pair of class feature and query sample feature so as to highlight the target object regions, making the extracted feature more discriminative. Secondly, a transductive inference algorithm is proposed to alleviate the low-data problem, which iteratively utilizes the unlabeled query set to augment the support set, thereby making the class features more representative. Extensive experiments on two benchmarks show our method is a simple, effective and computationally efficient framework and outperforms the state-of-the-arts.
translated by 谷歌翻译
少量学习,特别是几秒钟的图像分类,近年来受到了越来越多的关注,并目睹了重大进展。最近的一些研究暗示表明,许多通用技术或“诀窍”,如数据增强,预训练,知识蒸馏和自我监督,可能大大提高了几次学习方法的性能。此外,不同的作品可以采用不同的软件平台,不同的训练计划,不同的骨干架构以及甚至不同的输入图像大小,使得公平的比较困难,从业者与再现性斗争。为了解决这些情况,通过在Pytorch中的同一单个代码库中重新实施17个最新的框架,提出了几次射门学习(Libfewshot)的全面图书馆。此外,基于libfewshot,我们提供多个基准数据集的全面评估,其中包含多个骨干架构,以评估不同培训技巧的常见缺陷和效果。此外,鉴于近期对必要性或未培训机制的必要性怀疑,我们的评估结果表明,特别是当与预训练相结合时,仍然需要这种机制。我们希望我们的工作不仅可以降低初学者的障碍,可以在几次学习上工作,而且还消除了非动力技巧的影响,促进了几枪学习的内在研究。源代码可从https://github.com/rl-vig/libfewshot获取。
translated by 谷歌翻译
Camouflaged objects are seamlessly blended in with their surroundings, which brings a challenging detection task in computer vision. Optimizing a convolutional neural network (CNN) for camouflaged object detection (COD) tends to activate local discriminative regions while ignoring complete object extent, causing the partial activation issue which inevitably leads to missing or redundant regions of objects. In this paper, we argue that partial activation is caused by the intrinsic characteristics of CNN, where the convolution operations produce local receptive fields and experience difficulty to capture long-range feature dependency among image regions. In order to obtain feature maps that could activate full object extent, keeping the segmental results from being overwhelmed by noisy features, a novel framework termed Cross-Model Detail Querying network (DQnet) is proposed. It reasons the relations between long-range-aware representations and multi-scale local details to make the enhanced representation fully highlight the object regions and eliminate noise on non-object regions. Specifically, a vanilla ViT pretrained with self-supervised learning (SSL) is employed to model long-range dependencies among image regions. A ResNet is employed to enable learning fine-grained spatial local details in multiple scales. Then, to effectively retrieve object-related details, a Relation-Based Querying (RBQ) module is proposed to explore window-based interactions between the global representations and the multi-scale local details. Extensive experiments are conducted on the widely used COD datasets and show that our DQnet outperforms the current state-of-the-arts.
translated by 谷歌翻译
很少有图像分类是一个具有挑战性的问题,旨在仅基于少量培训图像来达到人类的识别水平。少数图像分类的一种主要解决方案是深度度量学习。这些方法是,通过将看不见的样本根据距离的距离进行分类,可在强大的深神经网络中学到的嵌入空间中看到的样品,可以避免以少数图像分类的少数训练图像过度拟合,并实现了最新的图像表现。在本文中,我们提供了对深度度量学习方法的最新审查,以进行2018年至2022年的少量图像分类,并根据度量学习的三个阶段将它们分为三组,即学习功能嵌入,学习课堂表示和学习距离措施。通过这种分类法,我们确定了他们面临的不同方法和问题的新颖性。我们通过讨论当前的挑战和未来趋势进行了少量图像分类的讨论。
translated by 谷歌翻译
The task of Few-shot learning (FSL) aims to transfer the knowledge learned from base categories with sufficient labelled data to novel categories with scarce known information. It is currently an important research question and has great practical values in the real-world applications. Despite extensive previous efforts are made on few-shot learning tasks, we emphasize that most existing methods did not take into account the distributional shift caused by sample selection bias in the FSL scenario. Such a selection bias can induce spurious correlation between the semantic causal features, that are causally and semantically related to the class label, and the other non-causal features. Critically, the former ones should be invariant across changes in distributions, highly related to the classes of interest, and thus well generalizable to novel classes, while the latter ones are not stable to changes in the distribution. To resolve this problem, we propose a novel data augmentation strategy dubbed as PatchMix that can break this spurious dependency by replacing the patch-level information and supervision of the query images with random gallery images from different classes from the query ones. We theoretically show that such an augmentation mechanism, different from existing ones, is able to identify the causal features. To further make these features to be discriminative enough for classification, we propose Correlation-guided Reconstruction (CGR) and Hardness-Aware module for instance discrimination and easier discrimination between similar classes. Moreover, such a framework can be adapted to the unsupervised FSL scenario.
translated by 谷歌翻译
来自多模态输入的人类学习效益通常出现为丰富语义(例如,在学习IT时描述对象的属性)。这使我们能够从非常有限的视觉示例中学习广泛的概念。但是,目前的少量学习(FSL)方法使用数值类标签来表示不提供关于学习概念的丰富语义含义的对象类。在这项工作中,我们表明,通过使用“类级”语言描述,可以以最少的注释成本获取,我们可以提高FSL性能。鉴于支持集和查询,我们的主要思想是创建一个瓶颈视觉特征(混合原型),然后用于在训练期间将类的语言描述作为辅助任务。我们开发基于转换器的前向和后向编码机制,以涉及可以编码两个模式之间的复杂关系的视觉和语义令牌。强迫原型来保留关于类描述的语义信息,作​​为视觉特征上的常规器,在推理时提高他们的新类别的概括。此外,该策略在学习的陈述之前强加了人类,确保该模型忠实地与视觉和语义概念相关联,从而提高了模型解释性。我们对四个数据集和消融研究的实验表明了有效地建模丰富的FSL语义。
translated by 谷歌翻译
Fine-grained visual recognition is to classify objects with visually similar appearances into subcategories, which has made great progress with the development of deep CNNs. However, handling subtle differences between different subcategories still remains a challenge. In this paper, we propose to solve this issue in one unified framework from two aspects, i.e., constructing feature-level interrelationships, and capturing part-level discriminative features. This framework, namely PArt-guided Relational Transformers (PART), is proposed to learn the discriminative part features with an automatic part discovery module, and to explore the intrinsic correlations with a feature transformation module by adapting the Transformer models from the field of natural language processing. The part discovery module efficiently discovers the discriminative regions which are highly-corresponded to the gradient descent procedure. Then the second feature transformation module builds correlations within the global embedding and multiple part embedding, enhancing spatial interactions among semantic pixels. Moreover, our proposed approach does not rely on additional part branches in the inference time and reaches state-of-the-art performance on 3 widely-used fine-grained object recognition benchmarks. Experimental results and explainable visualizations demonstrate the effectiveness of our proposed approach. The code can be found at https://github.com/iCVTEAM/PART.
translated by 谷歌翻译
很少有细粒度的分类和人搜索作为独特的任务和文学作品,已经分别对待了它们。但是,仔细观察揭示了重要的相似之处:这两个任务的目标类别只能由特定的对象细节歧视;相关模型应概括为新类别,而在培训期间看不到。我们提出了一个适用于这两个任务的新型统一查询引导网络(QGN)。QGN由一个查询引导的暹罗引文和兴奋子网组成,该子网还重新进行了所有网络层的查询和画廊功能,一个查询实习的区域建议特定于特定于特定的本地化以及查询指导的相似性子网络子网本网络用于公制学习。QGN在最近的一些少数细颗粒数据集上有所改善,在幼崽上的其他技术优于大幅度。QGN还对人搜索Cuhk-Sysu和PRW数据集进行了竞争性执行,我们在其中进行了深入的分析。
translated by 谷歌翻译