Prompt learning is one of the most effective and trending ways to adapt powerful vision-language foundation models like CLIP to downstream datasets by tuning learnable prompt vectors with very few samples. However, although prompt learning achieves excellent performance over in-domain data, it still faces the major challenge of generalizing to unseen classes and domains. Some existing prompt learning methods tackle this issue by adaptively generating different prompts for different tokens or domains but neglecting the ability of learned prompts to generalize to unseen domains. In this paper, we propose a novel prompt learning paradigm that directly generates domain invariant prompt generalizable to unseen domains, called MetaPrompt. Specifically, a dual-modality prompt tuning network is proposed to generate prompts for inputs from both image and text modalities. More importantly, we propose a meta-learning-based prompt tuning algorithm that explicitly constrains the prompt tuned on a specific domain or class also to achieve good performance on another domain or class. Extensive experiments on 11 datasets for base-to-new generalization and four datasets for domain generalization demonstrate that our method consistently and significantly outperforms existing methods.
translated by 谷歌翻译
随着大型预训练的Vison语言模型(如剪辑)的出现,可以通过及时调整来调整可转让表示形式。及时调整试图从存储在预训练的视觉模型的图像和文本编码器中的常识中探索有益信息,以探索下游任务。最近提出的名为“上下文优化”(COP)的方法将一组可学习的向量从语言侧引入文本提示符,而单独调整文本提示符则不会影响图像编码器的计算视觉特征,从而导致了次级优势。在本文中,我们通过学习文本提示并同时为文本和图像编码器提供双重模式提示调整范式。此外,为了使视觉提示更多地集中在目标视觉概念上,我们提出了类感知的视觉及时调整(CAVPT),该调整是通过在模板提示和视觉类别令牌嵌入的语言描述之间进行交叉注意来动态生成的。我们的方法提供了一种新的范式来调整大型预训练的视觉模型,并在8个数据集上进行了广泛的实验结果,证明了该方法的有效性。我们的代码在补充材料中可用。
translated by 谷歌翻译
预训练的视觉模型(例如,剪辑)在许多下游任务中显示出有希望的零弹性概括,并具有正确设计的文本提示。最近的作品不依赖手工设计的提示,而是使用下游任务的培训数据来学习提示。虽然有效,但针对领域数据的培训却降低了模型的概括能力,使其无法看到新领域。在这项工作中,我们提出了测试时间提示调整(TPT),该方法可以通过单个测试样本即时学习自适应提示。对于图像分类,TPT通过使用置信度选择最小化熵来优化提示,以便模型在每个测试样本的不同增强视图上都具有一致的预测。在评估对自然分布变化的概括时,TPT平均将零击的TOP-1精度提高了3.6%,超过了先前需要其他特定于任务的训练数据的迅速调整方法。在评估看不见类别的跨数据集泛化时,TPT与使用其他培训数据的最先进方法相当。项目页面:https://azshue.github.io/tpt。
translated by 谷歌翻译
Prompt Tuning, conditioning on task-specific learned prompt vectors, has emerged as a data-efficient and parameter-efficient method for adapting large pretrained vision-language models to multiple downstream tasks. However, existing approaches usually consider learning prompt vectors for each task independently from scratch, thereby failing to exploit the rich shareable knowledge across different vision-language tasks. In this paper, we propose multitask vision-language prompt tuning (MVLPT), which incorporates cross-task knowledge into prompt tuning for vision-language models. Specifically, (i) we demonstrate the effectiveness of learning a single transferable prompt from multiple source tasks to initialize the prompt for each target task; (ii) we show many target tasks can benefit each other from sharing prompt vectors and thus can be jointly learned via multitask prompt tuning. We benchmark the proposed MVLPT using three representative prompt tuning methods, namely text prompt tuning, visual prompt tuning, and the unified vision-language prompt tuning. Results in 20 vision tasks demonstrate that the proposed approach outperforms all single-task baseline prompt tuning methods, setting the new state-of-the-art on the few-shot ELEVATER benchmarks and cross-task generalization benchmarks. To understand where the cross-task knowledge is most effective, we also conduct a large-scale study on task transferability with 20 vision tasks in 400 combinations for each prompt tuning method. It shows that the most performant MVLPT for each prompt tuning method prefers different task combinations and many tasks can benefit each other, depending on their visual similarity and label similarity. Code is available at https://github.com/sIncerass/MVLPT.
translated by 谷歌翻译
诸如剪辑之类的大型预训练的视觉模型在学习表现方面表现出巨大的潜力,这些模型可以在各种下游任务中转移。与主要基于离散标签的传统表示学习不同,视觉语言预训练会使图像和文本在公共特征空间中对齐,这允许通过提示零弹性转移到下游任务,即从分类权重合成。描述兴趣类的自然语言。在这项工作中,我们表明,在实践中部署此类模型的一个重大挑战是及时的工程,它需要域专业知识,并且非常耗时 - 由于措辞的略有变化,需要花费大量时间来进行单词调整可能会对性能产生巨大影响。受到自然语言处理(NLP)迅速学习研究的最新进展的启发,我们提出了上下文优化(COP),这是一种专门用于调整类似剪辑的视觉语言模型的简单方法,用于下游图像识别。具体而言,Coop用可学习的向量建模了提示A的上下文单词,而整个预训练的参数则保持固定。为了处理不同的图像识别任务,我们提供了两个COOP的实现:统一上下文和特定于班级的上下文。通过在11个数据集上进行的大量实验,我们证明Coop只需要一两个镜头才能以相当的利润击败手工制作的提示,并且能够以16张镜头(例如16张照片)获得迅速工程的显着改进增益约为15%(最高达到45%以上)。尽管是一种基于学习的方法,但与使用手工制作的提示相比,Coop与零拍模型相比,取得了出色的域泛化性能。
translated by 谷歌翻译
Prompt tuning is a new few-shot transfer learning technique that only tunes the learnable prompt for pre-trained vision and language models such as CLIP. However, existing prompt tuning methods tend to learn spurious or entangled representations, which leads to poor generalization to unseen concepts. Towards non-spurious and efficient prompt learning from limited examples, this paper presents a novel \underline{\textbf{C}}ounterfactual \underline{\textbf{P}}rompt \underline{\textbf{L}}earning (CPL) method for vision and language models, which simultaneously employs counterfactual generation and contrastive learning in a joint optimization framework. Particularly, CPL constructs counterfactual by identifying minimal non-spurious feature change between semantically-similar positive and negative samples that causes concept change, and learns more generalizable prompt representation from both factual and counterfactual examples via contrastive learning. Extensive experiments demonstrate that CPL can obtain superior few-shot performance on different vision and language tasks than previous prompt tuning methods on CLIP. On image classification, we achieve 3.55\% average relative improvement on unseen classes across seven datasets; on image-text retrieval and visual question answering, we gain up to 4.09\% and 25.08\% relative improvements across three few-shot scenarios on unseen test sets respectively.
translated by 谷歌翻译
Pre-trained Vision-Language Models (VLMs) such as CLIP have shown impressive generalization capability in downstream vision tasks with appropriate text prompts. Instead of designing prompts manually, Context Optimization (CoOp) has been recently proposed to learn continuous prompts using task-specific training data. Despite the performance improvements on downstream tasks, several studies have reported that CoOp suffers from the overfitting issue in two aspects: (i) the test accuracy on base classes first gets better and then gets worse during training; (ii) the test accuracy on novel classes keeps decreasing. However, none of the existing studies can understand and mitigate such overfitting problem effectively. In this paper, we first explore the cause of overfitting by analyzing the gradient flow. Comparative experiments reveal that CoOp favors generalizable and spurious features in the early and later training stages respectively, leading to the non-overfitting and overfitting phenomenon. Given those observations, we propose Subspace Prompt Tuning (SubPT) to project the gradients in back-propagation onto the low-rank subspace spanned by the early-stage gradient flow eigenvectors during the entire training process, and successfully eliminate the overfitting problem. Besides, we equip CoOp with Novel Feature Learner (NFL) to enhance the generalization ability of the learned prompts onto novel categories beyond the training set, needless of image training data. Extensive experiments on 11 classification datasets demonstrate that SubPT+NFL consistently boost the performance of CoOp and outperform the state-of-the-art approach CoCoOp. Experiments on more challenging vision downstream tasks including open-vocabulary object detection and zero-shot semantic segmentation also verify the effectiveness of the proposed method. Codes can be found at https://tinyurl.com/mpe64f89.
translated by 谷歌翻译
Few-shot (FS) and zero-shot (ZS) learning are two different approaches for scaling temporal action detection (TAD) to new classes. The former adapts a pretrained vision model to a new task represented by as few as a single video per class, whilst the latter requires no training examples by exploiting a semantic description of the new class. In this work, we introduce a new multi-modality few-shot (MMFS) TAD problem, which can be considered as a marriage of FS-TAD and ZS-TAD by leveraging few-shot support videos and new class names jointly. To tackle this problem, we further introduce a novel MUlti-modality PromPt mETa-learning (MUPPET) method. This is enabled by efficiently bridging pretrained vision and language models whilst maximally reusing already learned capacity. Concretely, we construct multi-modal prompts by mapping support videos into the textual token space of a vision-language model using a meta-learned adapter-equipped visual semantics tokenizer. To tackle large intra-class variation, we further design a query feature regulation scheme. Extensive experiments on ActivityNetv1.3 and THUMOS14 demonstrate that our MUPPET outperforms state-of-the-art alternative methods, often by a large margin. We also show that our MUPPET can be easily extended to tackle the few-shot object detection problem and again achieves the state-of-the-art performance on MS-COCO dataset. The code will be available in https://github.com/sauradip/MUPPET
translated by 谷歌翻译
域泛化(DG)是一个难度的学习问题,旨在学习一个概念域的概念模型。最近的巨型预训练模型,如剪辑和GPT-3,即基础模型(FMS),已被证明对许多分布换档具有强大,因此应导致DG的大量改进。在这项工作中,我们研究了在图像分类中采用DG问题采用剪辑的通用方法,在那里我们评估了天真零射击学习和全DG学习设置。对于后者,我们提出了AP(摊销提示),作为迅速生成形式的域推断的新方法。在域泛化基准上使用多个标准数据集,即PACS,VLC,OfficeHome和Terraincognita,Clip提供了可比的性能而无需微调任何参数,这表明FM在DG中的适用性和重要性。此外,我们表明,组合域提示跟踪带剪辑使AP能够以大的余量越大,从71.3 \%升高到79.3 \%的精度。我们希望我们的方法的简单性和成功强调强调的重要性并导致更广泛采用和分析域泛化领域的基础模型。
translated by 谷歌翻译
对比视力语言预训练(称为剪辑)为使用大型图像文本对学习视觉表示提供了新的范式。通过零拍知识转移,它在下游任务上表现出令人印象深刻的表现。为了进一步增强剪辑的适应能力,现有的方法提议微调额外的可学习模块,这大大改善了少量的性能,但引入了额外的培训时间和计算资源。在本文中,我们提出了一种无训练的适应方法,用于进行剪辑进行几个弹药分类,称为Tip-Adapter,该分类不仅继承了零拍剪辑的无训练优势,而且还与训练需要的那些相当的表现相当方法。 TIP-ADAPTER通过少数照片训练集通过键值缓存模型构造适配器,并更新通过功能检索中剪辑中编码的先验知识。最重要的是,可以通过对10 $ \ times $ \现有方法少的速度$ \ times $ $ \现有方法进行微调,这可以进一步提高Imagenet上的最先进。高效的。我们在11个数据集上进行了很少的射击分类实验,以证明我们提出的方法的优势。代码在https://github.com/gaopengcuhk/tip-adapter上发布。
translated by 谷歌翻译
提示方法被认为是几次自然语言处理的关键进展之一。最近对基于离散令牌的``硬提示''转移到连续``软提示''的最新研究,这些提示将可学习的向量用作伪提示代币并实现更好的性能。尽管显示出有希望的前景,但观察到这些软宣传的方法在很大程度上依赖良好的初始化来生效。不幸的是,获得软提示的完美初始化需要了解内在语言模型的工作和精心设计,这绝非易事,必须从头开始重新启动每个新任务。为了解决此问题,我们提出了一种称为Metaprompting的广义软提示方法,该方法采用了良好认可的模型 - 静态元学习算法,以自动找到更好的及时初始化,从而快速适应新的促进任务。问题并在四个不同的数据集上带来了显着改善(1次设置的准确性提高了6分),从而实现了新的最新性能。
translated by 谷歌翻译
Large-scale multi-modal training with image-text pairs imparts strong generalization to CLIP model. Since training on a similar scale for videos is infeasible, recent approaches focus on the effective transfer of image-based CLIP to the video domain. In this pursuit, new parametric modules are added to learn temporal information and inter-frame relationships which require meticulous design efforts. Furthermore, when the resulting models are learned on videos, they tend to overfit on the given task distribution and lack in generalization aspect. This begs the following question: How to effectively transfer image-level CLIP representations to videos? In this work, we show that a simple Video Fine-tuned CLIP (ViFi-CLIP) baseline is generally sufficient to bridge the domain gap from images to videos. Our qualitative analysis illustrates that the frame-level processing from CLIP image-encoder followed by feature pooling and similarity matching with corresponding text embeddings helps in implicitly modeling the temporal cues within ViFi-CLIP. Such fine-tuning helps the model to focus on scene dynamics, moving objects and inter-object relationships. For low-data regimes where full fine-tuning is not viable, we propose a `bridge and prompt' approach that first uses fine-tuning to bridge the domain gap and then learns prompts on language and vision side to adapt CLIP representations. We extensively evaluate this simple yet strong baseline on zero-shot, base-to-novel generalization, few-shot and fully supervised settings across five video benchmarks. Our code is available at https://github.com/muzairkhattak/ViFi-CLIP.
translated by 谷歌翻译
我们介绍了域名感知持续零射击学习(DACZSL),顺序地在视觉域中视觉识别未经证实的类别的图像。我们通过将其划分为一系列任务,在DomainEnt数据集之上创建了DACZSL,其中类在培训期间在所见的域中逐步提供,并且在看见和看不见的课程上进行了看不见的域。我们还提出了一种新颖的域名不变的CZSL网络(DIN),这胜过了我们适用于DACZSL设置的最先进的基线模型。除了全球共享网络之外,我们采用基于结构的方法来缓解来自以前的任务的知识,并使用小的每任务私有网络。为了鼓励私人网络捕获域和任务特定的表示,我们用一个新的对抗性知识解除义目设置训练我们的模型,以使我们的全局网络任务 - 不变和域中的所有任务都是不变的。我们的方法还要学习类明智的学习提示,以获取更好的类级文本表示,用于表示侧面信息,以启用未来的未经看不见的类的零拍摄预测。我们的代码和基准将公开可用。
translated by 谷歌翻译
Prompt tuning has been employed as an efficient way to adapt large vision-language pre-trained models (e.g. CLIP) to various downstream tasks in data-limited or label-limited settings. Nonetheless, visual data (e.g., images) is by default prerequisite for learning prompts in existing methods. In this work, we advocate that the effectiveness of image-text contrastive learning in aligning the two modalities (for training CLIP) further makes it feasible to treat texts as images for prompt tuning and introduce TaI prompting. In contrast to the visual data, text descriptions are easy to collect, and their class labels can be directly derived. Particularly, we apply TaI prompting to multi-label image recognition, where sentences in the wild serve as alternatives to images for prompt tuning. Moreover, with TaI, double-grained prompt tuning (TaI-DPT) is further presented to extract both coarse-grained and fine-grained embeddings for enhancing the multi-label recognition performance. Experimental results show that our proposed TaI-DPT outperforms zero-shot CLIP by a large margin on multiple benchmarks, e.g., MS-COCO, VOC2007, and NUS-WIDE, while it can be combined with existing methods of prompting from images to improve recognition performance further. Code is released at https://github.com/guozix/TaI-DPT.
translated by 谷歌翻译
作为剪辑的对比视觉语言预培训为通过使用大规模对比图像文本对提供了学习视觉表示的新范式。它显示了零击中知识转移到下游任务的令人印象深刻的性能。为了进一步增强剪辑的几次射击功能,提出的剪辑适配器提出微调轻量级残留功能适配器,并显着提高了几次拍摄分类的性能。但是,这样的过程仍然需要额外的培训和计算资源。在本文中,我们提出了\ textbf {t}下雨的cl \ textbf {ip} - \ textbf {适配器}(\ textbf {tip-adapter}),它不仅继承了剪辑的无训练优势,还可以相当地执行或甚至比剪辑适配器更好。提示 - 适配器不需要任何用于训练适配器的备份传播,而是通过从几次拍摄训练集构造的键值高速缓存模型创建权重。在这种非参数的方式中,提示适配器在没有任何训练的情况下获取良好的适配器权重,这既有效且有效。此外,可以通过微调这种适当的初始化适配器进一步提高尖端适配器的性能,仅用于具有超快速收敛速度的几个时期。我们对ImageNet和其他10个数据集进行了广泛的小型分类实验,以证明提出的提示适配器的优越性。代码将以\ URL {https://github.com/gaopengcuhk/tip-adapter}释放。
translated by 谷歌翻译
Although significant progress has been made in few-shot learning, most of existing few-shot learning methods require supervised pre-training on a large amount of samples of base classes, which limits their generalization ability in real world application. Recently, large-scale self-supervised vision-language models (e.g., CLIP) have provided a new paradigm for transferable visual representation learning. However, the pre-trained VLPs may neglect detailed visual information that is difficult to describe by language sentences, but important for learning an effective classifier in few-shot classification. To address the above problem, we propose a new framework, named Semantic-guided Visual Adapting (SgVA), which can effectively extend vision-language pre-trained models to produce discriminative task-specific visual features by comprehensively using a vision-specific contrastive loss, a cross-modal contrastive loss, and an implicit knowledge distillation. The implicit knowledge distillation is designed to transfer the fine-grained cross-modal knowledge to guide the updating of the vision adapter. State-of-the-art results on 13 datasets demonstrate that the adapted visual features can well complement the cross-modal features to improve few-shot image classification.
translated by 谷歌翻译
对比视觉语言预培训(剪辑)最近淹没了其可转让的视觉表现学习的关注。由大规模的图像文本对进行监督,剪辑能够对准配对的图像和文本,从而在开放词汇场景中进行零拍摄识别。然而,特定应用与通常预先训练的知识之间存在语义差距,这使得匹配子最优在下游任务上。在本文中,我们提出了VT-CLIP通过可视导向文本来增强视觉语言建模。具体而言,我们指导文本功能以自适应地探索图像上的信息区域,并通过跨关注的Machanism聚合视觉特征。以这种方式,视觉引导文本与图像变得更加语义相关,这极大地利益匹配过程。在几次拍摄的设置中,我们在11名知名分类数据集中评估我们的VT-CLIP,并进行实验广泛的消融研究,以证明VT-CLIP的有效性。代码将很快发布。
translated by 谷歌翻译
在低标签制度中,解决图像的多标签识别(MLR)是许多现实世界应用的一项艰巨任务。最近的工作学会了文本和视觉空间之间的一致性,以补偿图像标签不足,但由于可用的MLR注释量有限,因此失去了准确性。在这项工作中,我们利用数百万辅助图像文本对预测的文本和视觉特征的牢固对齐,并提出双背景优化(dualCoop)作为部分标签MLR和零发射MLR的统一框架。 DualCoop用类名来编码正面和负面的上下文,作为语言输入的一部分(即提示)。由于DualCoop仅在验证的视觉语言框架上引入了非常轻松的开销,因此它可以迅速适应具有有限的注释甚至看不见的类别的多标签识别任务。对两个挑战性低标签设置的标准多标签识别基准测试的实验证明了我们方法比最新方法的优势。
translated by 谷歌翻译
Pretrained large-scale vision-language models like CLIP have exhibited strong generalization over unseen tasks. Yet imperceptible adversarial perturbations can significantly reduce CLIP's performance on new tasks. In this work, we identify and explore the problem of \emph{adapting large-scale models for zero-shot adversarial robustness}. We first identify two key factors during model adaption -- training losses and adaptation methods -- that affect the model's zero-shot adversarial robustness. We then propose a text-guided contrastive adversarial training loss, which aligns the text embeddings and the adversarial visual features with contrastive learning on a small set of training data. We apply this training loss to two adaption methods, model finetuning and visual prompt tuning. We find that visual prompt tuning is more effective in the absence of texts, while finetuning wins in the existence of text guidance. Overall, our approach significantly improves the zero-shot adversarial robustness over CLIP, seeing an average improvement of over 31 points over ImageNet and 15 zero-shot datasets. We hope this work can shed light on understanding the zero-shot adversarial robustness of large-scale models.
translated by 谷歌翻译
视觉模型最近在许多计算机视觉任务上显示出巨大的潜力。同时,与线性探针相比,先前的工作表明,与线性探针相比,这是较少的图像识别的迅速调整,可以在很少的图像识别上获得卓越的性能。在实际应用程序中,相关的几个射击任务是相关的,尤其是在专业领域。但是,以前的工作忽略了此类信息。受到以下事实的启发,即通过多任务学习通常可以提高性能,我们提出了一种新颖的方法softcpt(迅速调整的软上下文共享),以微调多个目标几个目标任务的预训练的视觉模型, 同时。具体来说,我们设计了一个任务共享的元网络,以使用预定义的任务名称以及可学习的元提示为输入为每个任务生成提示向量。因此,所有任务的迅速向量将以软的方式共享。该共享的元网络的参数以及元提示向量都在所有目标任务的联合培训集中调整。在三个多任务少量数据集上进行的广泛实验表明,SoftCpt的表现优于代表性的单任务提示方法Coop [78],这意味着多任务学习在视觉及时及时调整中的有效性。源代码和数据将公开可用。
translated by 谷歌翻译