我们查看模型可解释性的特定方面:模型通常需要限制在大小上才能被认为是可解释的,例如,深度5的决策树比深度50中的一个更容易解释。但是,较小的模型也倾向于高偏见。这表明可解释性和准确性之间的权衡。我们提出了一种模型不可知论技术,以最大程度地减少这种权衡。我们的策略是首先学习甲骨文,这是培训数据上高度准确的概率模型。 Oracle预测的不确定性用于学习培训数据的抽样分布。然后,对使用此分布获得的数据样本进行了可解释的模型,通常会导致精确度明显更高。我们将抽样策略作为优化问题。我们的解决方案1具有以下关键的有利属性:(1)它使用固定数量的七个优化变量,而与数据的维度(2)无关,它是模型不可知的 - 因为可解释的模型和甲骨文都可能属于任意性模型家族(3)它具有模型大小的灵活概念,并且可以容纳向量大小(4)它是一个框架,使其能够从优化领域的进度中受益。我们还提出了以下有趣的观察结果:(a)通常,小型模型大小的最佳训练分布与测试分布不同; (b)即使可解释的模型和甲骨文来自高度截然不同的模型家族,也存在这种效果:我们通过使用封闭的复发单位网络作为甲骨文来提高决策树的序列分类精度,从而在文本分类任务上显示此效果。使用字符n-grams; (c)对于模型,我们的技术可用于确定给定样本量的最佳训练样本。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
超参数优化构成了典型的现代机器学习工作流程的很大一部分。这是由于这样一个事实,即机器学习方法和相应的预处理步骤通常只有在正确调整超参数时就会产生最佳性能。但是在许多应用中,我们不仅有兴趣仅仅为了预测精度而优化ML管道;确定最佳配置时,必须考虑其他指标或约束,从而导致多目标优化问题。由于缺乏知识和用于多目标超参数优化的知识和容易获得的软件实现,因此通常在实践中被忽略。在这项工作中,我们向读者介绍了多个客观超参数优化的基础知识,并激励其在应用ML中的实用性。此外,我们从进化算法和贝叶斯优化的领域提供了现有优化策略的广泛调查。我们说明了MOO在几个特定ML应用中的实用性,考虑了诸如操作条件,预测时间,稀疏,公平,可解释性和鲁棒性之类的目标。
translated by 谷歌翻译
Learning curves provide insight into the dependence of a learner's generalization performance on the training set size. This important tool can be used for model selection, to predict the effect of more training data, and to reduce the computational complexity of model training and hyperparameter tuning. This review recounts the origins of the term, provides a formal definition of the learning curve, and briefly covers basics such as its estimation. Our main contribution is a comprehensive overview of the literature regarding the shape of learning curves. We discuss empirical and theoretical evidence that supports well-behaved curves that often have the shape of a power law or an exponential. We consider the learning curves of Gaussian processes, the complex shapes they can display, and the factors influencing them. We draw specific attention to examples of learning curves that are ill-behaved, showing worse learning performance with more training data. To wrap up, we point out various open problems that warrant deeper empirical and theoretical investigation. All in all, our review underscores that learning curves are surprisingly diverse and no universal model can be identified.
translated by 谷歌翻译
无论是在功能选择的领域还是可解释的AI领域,都有基于其重要性的“排名”功能的愿望。然后可以将这种功能重要的排名用于:(1)减少数据集大小或(2)解释机器学习模型。但是,在文献中,这种特征排名没有以系统的,一致的方式评估。许多论文都有不同的方式来争论哪些具有重要性排名最佳的特征。本文通过提出一种新的评估方法来填补这一空白。通过使用合成数据集,可以事先知道特征重要性得分,从而可以进行更系统的评估。为了促进使用新方法的大规模实验,在Python建造了一个名为FSEVAL的基准测定框架。该框架允许并行运行实验,并在HPC系统上的计算机上分布。通过与名为“权重和偏见”的在线平台集成,可以在实时仪表板上进行交互探索图表。该软件作为开源软件发布,并在PYPI平台上以包裹发行。该研究结束时,探索了一个这样的大规模实验,以在许多方面找到参与算法的优势和劣势。
translated by 谷歌翻译
背景信息:在过去几年中,机器学习(ML)一直是许多创新的核心。然而,包括在所谓的“安全关键”系统中,例如汽车或航空的系统已经被证明是非常具有挑战性的,因为ML的范式转变为ML带来完全改变传统认证方法。目的:本文旨在阐明与ML为基础的安全关键系统认证有关的挑战,以及文献中提出的解决方案,以解决它们,回答问题的问题如何证明基于机器学习的安全关键系统?'方法:我们开展2015年至2020年至2020年之间发布的研究论文的系统文献综述(SLR),涵盖了与ML系统认证有关的主题。总共确定了217篇论文涵盖了主题,被认为是ML认证的主要支柱:鲁棒性,不确定性,解释性,验证,安全强化学习和直接认证。我们分析了每个子场的主要趋势和问题,并提取了提取的论文的总结。结果:单反结果突出了社区对该主题的热情,以及在数据集和模型类型方面缺乏多样性。它还强调需要进一步发展学术界和行业之间的联系,以加深域名研究。最后,它还说明了必须在上面提到的主要支柱之间建立连接的必要性,这些主要柱主要主要研究。结论:我们强调了目前部署的努力,以实现ML基于ML的软件系统,并讨论了一些未来的研究方向。
translated by 谷歌翻译
分类链是一种用于在多标签分类中建模标签依赖性的有效技术。但是,该方法需要标签的固定静态顺序。虽然理论上,任何顺序都足够了,实际上,该订单对最终预测的质量具有大量影响。动态分类链表示每个实例对分类的想法,可以动态选择预测标签的顺序。这种方法的天真实现的复杂性是禁止的,因为它需要训练一系列分类器,以满足标签的每种可能置换。为了有效地解决这个问题,我们提出了一种基于随机决策树的新方法,该方法可以动态地选择每个预测的标签排序。我们凭经验展示了下一个标签的动态选择,通过在否则不变的随机决策树模型下使用静态排序。 %和实验环境。此外,我们还展示了基于极端梯度提升树的替代方法,其允许更具目标的动态分级链训练。我们的结果表明,该变体优于随机决策树和其他基于树的多标签分类方法。更重要的是,动态选择策略允许大大加速培训和预测。
translated by 谷歌翻译
本文介绍了分类器校准原理和实践的简介和详细概述。校准的分类器正确地量化了与其实例明智的预测相关的不确定性或信心水平。这对于关键应用,最佳决策,成本敏感的分类以及某些类型的上下文变化至关重要。校准研究具有丰富的历史,其中几十年来预测机器学习作为学术领域的诞生。然而,校准兴趣的最近增加导致了新的方法和从二进制到多种子体设置的扩展。需要考虑的选项和问题的空间很大,并导航它需要正确的概念和工具集。我们提供了主要概念和方法的介绍性材料和最新的技术细节,包括适当的评分规则和其他评估指标,可视化方法,全面陈述二进制和多字数分类的HOC校准方法,以及几个先进的话题。
translated by 谷歌翻译
即使机器学习算法已经在数据科学中发挥了重要作用,但许多当前方法对输入数据提出了不现实的假设。由于不兼容的数据格式,或数据集中的异质,分层或完全缺少的数据片段,因此很难应用此类方法。作为解决方案,我们提出了一个用于样本表示,模型定义和培训的多功能,统一的框架,称为“ Hmill”。我们深入审查框架构建和扩展的机器学习的多个范围范式。从理论上讲,为HMILL的关键组件的设计合理,我们将通用近似定理的扩展显示到框架中实现的模型所实现的所有功能的集合。本文还包含有关我们实施中技术和绩效改进的详细讨论,该讨论将在MIT许可下发布供下载。该框架的主要资产是其灵活性,它可以通过相同的工具对不同的现实世界数据源进行建模。除了单独观察到每个对象的一组属性的标准设置外,我们解释了如何在框架中实现表示整个对象系统的图表中的消息推断。为了支持我们的主张,我们使用框架解决了网络安全域的三个不同问题。第一种用例涉及来自原始网络观察结果的IoT设备识别。在第二个问题中,我们研究了如何使用以有向图表示的操作系统的快照可以对恶意二进制文件进行分类。最后提供的示例是通过网络中实体之间建模域黑名单扩展的任务。在所有三个问题中,基于建议的框架的解决方案可实现与专业方法相当的性能。
translated by 谷歌翻译
In the last years many accurate decision support systems have been constructed as black boxes, that is as systems that hide their internal logic to the user. This lack of explanation constitutes both a practical and an ethical issue. The literature reports many approaches aimed at overcoming this crucial weakness sometimes at the cost of scarifying accuracy for interpretability. The applications in which black box decision systems can be used are various, and each approach is typically developed to provide a solution for a specific problem and, as a consequence, delineating explicitly or implicitly its own definition of interpretability and explanation. The aim of this paper is to provide a classification of the main problems addressed in the literature with respect to the notion of explanation and the type of black box system. Given a problem definition, a black box type, and a desired explanation this survey should help the researcher to find the proposals more useful for his own work. The proposed classification of approaches to open black box models should also be useful for putting the many research open questions in perspective.
translated by 谷歌翻译
The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often referred to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of attempts so far at handling uncertainty in general and formalizing this distinction in particular.
translated by 谷歌翻译
算法配置(AC)与对参数化算法最合适的参数配置的自动搜索有关。目前,文献中提出了各种各样的交流问题变体和方法。现有评论没有考虑到AC问题的所有衍生物,也没有提供完整的分类计划。为此,我们引入分类法以分别描述配置方法的交流问题和特征。我们回顾了分类法的镜头中现有的AC文献,概述相关的配置方法的设计选择,对比方法和问题变体相互对立,并描述行业中的AC状态。最后,我们的评论为研究人员和从业人员提供了AC领域的未来研究方向。
translated by 谷歌翻译
Dataset scaling, also known as normalization, is an essential preprocessing step in a machine learning pipeline. It is aimed at adjusting attributes scales in a way that they all vary within the same range. This transformation is known to improve the performance of classification models, but there are several scaling techniques to choose from, and this choice is not generally done carefully. In this paper, we execute a broad experiment comparing the impact of 5 scaling techniques on the performances of 20 classification algorithms among monolithic and ensemble models, applying them to 82 publicly available datasets with varying imbalance ratios. Results show that the choice of scaling technique matters for classification performance, and the performance difference between the best and the worst scaling technique is relevant and statistically significant in most cases. They also indicate that choosing an inadequate technique can be more detrimental to classification performance than not scaling the data at all. We also show how the performance variation of an ensemble model, considering different scaling techniques, tends to be dictated by that of its base model. Finally, we discuss the relationship between a model's sensitivity to the choice of scaling technique and its performance and provide insights into its applicability on different model deployment scenarios. Full results and source code for the experiments in this paper are available in a GitHub repository.\footnote{https://github.com/amorimlb/scaling\_matters}
translated by 谷歌翻译
我们介绍了数据科学预测生命周期中各个阶段开发和采用自动化的技术和文化挑战的说明概述,从而将重点限制为使用结构化数据集的监督学习。此外,我们回顾了流行的开源Python工具,这些工具实施了针对自动化挑战的通用解决方案模式,并突出了我们认为进步仍然需要的差距。
translated by 谷歌翻译
本文考虑了在分解正常形式(DNF,ANDS的DNF,ANDS,相当于判定规则集)或联合正常形式(CNF,ORS)作为分类模型的联合正常形式的学习。为规则简化,将整数程序配制成最佳贸易分类准确性。我们还考虑公平设定,并扩大制定,以包括对两种不同分类措施的明确限制:机会平等和均等的赔率。列生成(CG)用于有效地搜索候选条款(连词或剖钉)的指数数量,而不需要启发式规则挖掘。此方法还会绑定所选规则集之间的间隙和培训数据上的最佳规则集。要处理大型数据集,我们建议使用随机化的近似CG算法。与三个最近提出的替代方案相比,CG算法主导了16个数据集中的8个中的精度简单折衷。当最大限度地提高精度时,CG与为此目的设计的规则学习者具有竞争力,有时发现明显更简单的解决方案,这些解决方案不太准确。与其他公平和可解释的分类器相比,我们的方法能够找到符合较严格的公平概念的规则集,以适度的折衷准确性。
translated by 谷歌翻译
Building an accurate model of travel behaviour based on individuals' characteristics and built environment attributes is of importance for policy-making and transportation planning. Recent experiments with big data and Machine Learning (ML) algorithms toward a better travel behaviour analysis have mainly overlooked socially disadvantaged groups. Accordingly, in this study, we explore the travel behaviour responses of low-income individuals to transit investments in the Greater Toronto and Hamilton Area, Canada, using statistical and ML models. We first investigate how the model choice affects the prediction of transit use by the low-income group. This step includes comparing the predictive performance of traditional and ML algorithms and then evaluating a transit investment policy by contrasting the predicted activities and the spatial distribution of transit trips generated by vulnerable households after improving accessibility. We also empirically investigate the proposed transit investment by each algorithm and compare it with the city of Brampton's future transportation plan. While, unsurprisingly, the ML algorithms outperform classical models, there are still doubts about using them due to interpretability concerns. Hence, we adopt recent local and global model-agnostic interpretation tools to interpret how the model arrives at its predictions. Our findings reveal the great potential of ML algorithms for enhanced travel behaviour predictions for low-income strata without considerably sacrificing interpretability.
translated by 谷歌翻译
自动化的HyperParameter优化(HPO)可以支持从业者在机器学习模型中获得峰值性能。然而,通常缺乏有价值的见解,以对不同的超参数对最终模型性能的影响。这种缺乏可解释性使得难以信任并理解自动化的HPO过程及其结果。我们建议使用可解释的机器学习(IML)从HPO中获得的实验数据与贝叶斯优化(BO)一起获得见解。 BO倾向于专注于具有潜在高性能配置的有前途的区域,从而诱导采样偏差。因此,许多IML技术,例如部分依赖曲线(PDP),承载产生偏置解释的风险。通过利用BO代理模型的后部不确定性,我们引入了具有估计置信带的PDP的变种。我们建议分区Quand参数空间以获得相关子区域的更自信和可靠的PDP。在一个实验研究中,我们为子区域内PDP的质量提高提供了定量证据。
translated by 谷歌翻译
Labeling a module defective or non-defective is an expensive task. Hence, there are often limits on how much-labeled data is available for training. Semi-supervised classifiers use far fewer labels for training models, but there are numerous semi-supervised methods, including self-labeling, co-training, maximal-margin, and graph-based methods, to name a few. Only a handful of these methods have been tested in SE for (e.g.) predicting defects and even that, those tests have been on just a handful of projects. This paper takes a wide range of 55 semi-supervised learners and applies these to over 714 projects. We find that semi-supervised "co-training methods" work significantly better than other approaches. However, co-training needs to be used with caution since the specific choice of co-training methods needs to be carefully selected based on a user's specific goals. Also, we warn that a commonly-used co-training method ("multi-view"-- where different learners get different sets of columns) does not improve predictions (while adding too much to the run time costs 11 hours vs. 1.8 hours). Those cautions stated, we find using these "co-trainers," we can label just 2.5% of data, then make predictions that are competitive to those using 100% of the data. It is an open question worthy of future work to test if these reductions can be seen in other areas of software analytics. All the codes used and datasets analyzed during the current study are available in the https://GitHub.com/Suvodeep90/Semi_Supervised_Methods.
translated by 谷歌翻译
众所周知,端到端的神经NLP体系结构很难理解,这引起了近年来为解释性建模的许多努力。模型解释的基本原则是忠诚,即,解释应准确地代表模型预测背后的推理过程。这项调查首先讨论了忠诚的定义和评估及其对解释性的意义。然后,我们通过将方法分为五类来介绍忠实解释的最新进展:相似性方法,模型内部结构的分析,基于反向传播的方法,反事实干预和自我解释模型。每个类别将通过其代表性研究,优势和缺点来说明。最后,我们从它们的共同美德和局限性方面讨论了上述所有方法,并反思未来的工作方向忠实的解释性。对于有兴趣研究可解释性的研究人员,这项调查将为该领域提供可访问且全面的概述,为进一步探索提供基础。对于希望更好地了解自己的模型的用户,该调查将是一项介绍性手册,帮助选择最合适的解释方法。
translated by 谷歌翻译
自动化封路计优化(HPO)已经获得了很大的普及,并且是大多数自动化机器学习框架的重要成分。然而,设计HPO算法的过程仍然是一个不系统和手动的过程:确定了现有工作的限制,提出的改进是 - 即使是专家知识的指导 - 仍然是一定任意的。这很少允许对哪些算法分量的驾驶性能进行全面了解,并且承载忽略良好算法设计选择的风险。我们提出了一个原理的方法来实现应用于多倍性HPO(MF-HPO)的自动基准驱动算法设计的原则方法:首先,我们正式化包括的MF-HPO候选的丰富空间,但不限于普通的HPO算法,然后呈现可配置的框架覆盖此空间。要自动和系统地查找最佳候选者,我们遵循通过优化方法,并通过贝叶斯优化搜索算法候选的空间。我们挑战是否必须通过执行消融分析来挑战所发现的设计选择或可以通过更加天真和更简单的设计。我们观察到使用相对简单的配置,在某些方式中比建立的方法更简单,只要某些关键配置参数具有正确的值,就可以很好地执行得很好。
translated by 谷歌翻译