在机器人域中,学习和计划因连续的状态空间,连续的动作空间和较长的任务范围而变得复杂。在这项工作中,我们通过神经符号关系过渡模型(NSRTS)解决了这些挑战,这是一种具有数据效率学习的新型模型,与强大的机器人计划方法兼容,并且可以推广到对象上。NSRT具有符号和神经成分,实现了双重计划方案,其中外循环中的符号AI规划指导内部循环中的神经模型的连续计划。四个机器人计划域中的实验表明,仅在数十或数百个培训情节之后就可以学习NSRT,然后用于快速规划的新任务,这些任务需要高达60个动作,并且涉及比培训期间看到的更多物体。视频:https://tinyurl.com/chitnis-nsrts
translated by 谷歌翻译
在具有连续以对象的状态,连续的动作,长距离和稀疏反馈的机器人环境中,决策是具有挑战性的。诸如任务和运动计划(TAMP)之类的层次结构方法通过将决策分解为两个或更多级别的抽象来解决这些挑战。在给出演示和符号谓词的环境中,先前的工作已经显示了如何通过手动设计的参数化策略来学习符号操作员和神经采样器。我们的主要贡献是一种与操作员和采样器结合使用的参数化策略的方法。这些组件被包装到模块化神经符号技能中,并与搜索 - 然后样本tamp一起测序以解决新任务。在四个机器人域的实验中,我们表明我们的方法 - 具有神经符号技能的双重计划 - 可以解决具有不同初始状态,目标和对象不同的各种任务,表现优于六个基线和消融。视频:https://youtu.be/pbfzp8rpugg代码:https://tinyurl.com/skill-learning
translated by 谷歌翻译
在环境抽象中进行高级搜索来指导低水平决策,这是一种有效的方法,是解决连续状态和行动空间中的长途任务的有效方法。最近的工作表明,可以以符号操作员和神经采样器的形式学习使这种二聚体计划的动作抽象,并且鉴于实现已知目标的符号谓词和演示。在这项工作中,我们表明,在动作往往会导致大量谓词发生变化的环境中,现有的方法不足。为了解决这个问题,我们建议学习具有忽略效果的操作员。激发我们方法的关键思想是,对谓词的每一个观察到的变化进行建模是不必要的。唯一需要建模的更改是高级搜索以实现指定目标所需的更改。在实验上,我们表明我们的方法能够学习具有忽略六个混合机器人域效果的操作员,这些企业能够解决一个代理,以解决具有不同初始状态,目标和对象数量的新任务变化,比几个基线要高得多。
translated by 谷歌翻译
PDDLStream solvers have recently emerged as viable solutions for Task and Motion Planning (TAMP) problems, extending PDDL to problems with continuous action spaces. Prior work has shown how PDDLStream problems can be reduced to a sequence of PDDL planning problems, which can then be solved using off-the-shelf planners. However, this approach can suffer from long runtimes. In this paper we propose LAZY, a solver for PDDLStream problems that maintains a single integrated search over action skeletons, which gets progressively more geometrically informed as samples of possible motions are lazily drawn during motion planning. We explore how learned models of goal-directed policies and current motion sampling data can be incorporated in LAZY to adaptively guide the task planner. We show that this leads to significant speed-ups in the search for a feasible solution evaluated over unseen test environments of varying numbers of objects, goals, and initial conditions. We evaluate our TAMP approach by comparing to existing solvers for PDDLStream problems on a range of simulated 7DoF rearrangement/manipulation problems.
translated by 谷歌翻译
教深入的强化学习(RL)代理在多任务环境中遵循说明是一个挑战性的问题。我们认为用户通过线性时间逻辑(LTL)公式定义了每个任务。但是,用户可能未知的复杂环境中的某些因果关系依赖性未知。因此,当人类用户指定说明时,机器人无法通过简单地按照给定的说明来解决任务。在这项工作中,我们提出了一个分层增强学习(HRL)框架,其中学习了符号过渡模型,以有效地制定高级计划,以指导代理有效地解决不同的任务。具体而言,符号过渡模型是通过归纳逻辑编程(ILP)学习的,以捕获状态过渡的逻辑规则。通过计划符号过渡模型的乘积和从LTL公式得出的自动机的乘积,代理可以解决因果关系依赖性,并将因果复杂问题分解为一系列简单的低级子任务。我们在离散和连续域中的三个环境上评估了提出的框架,显示了比以前的代表性方法的优势。
translated by 谷歌翻译
机器人中的任务和运动规划问题通常将符号规划与连续状态和动作变量相处的运动优化相结合,从而满足满足在任务变量上强加的逻辑约束的轨迹。符号规划可以用任务变量的数量呈指数级级,因此最近的工作诸如PDDLSTREAM的工作侧重于乐观规划,以逐步增长的对象和事实,直到找到可行的轨迹。然而,这种设置以宽度第一的方式被彻底地且均匀地扩展,无论手头的问题的几何结构如何,这使得具有大量物体的长时间地理推理,这令人难以耗时。为了解决这个问题,我们提出了一个几何通知的符号规划员,以最佳的方式扩展了一组对象和事实,优先由从现有搜索计算中学到的基于神经网络的基于神经网络的分数。我们在各种问题上评估我们的方法,并展示了在大型或困难情景中规划的提高能力。我们还在几个块堆叠操作任务中将算法应用于7DOF机器人手臂。
translated by 谷歌翻译
我们提出了一种新颖的通用方法,该方法可以找到动作的,离散的对象和效果类别,并为非平凡的行动计划建立概率规则。我们的机器人使用原始操作曲目与对象进行交互,该曲目被认为是早先获取的,并观察到它在环境中可以产生的效果。为了形成动作界面的对象,效果和关系类别,我们在预测性的,深的编码器折线网络中采用二进制瓶颈层,该网络以场景的形象和应用为输入应用的动作,并在场景中生成结果效果在像素坐标中。学习后,二进制潜在向量根据机器人的相互作用体验代表动作驱动的对象类别。为了将神经网络代表的知识提炼成对符号推理有用的规则,对决策树进行了训练以复制其解码器功能。概率规则是从树的决策路径中提取的,并在概率计划域定义语言(PPDDL)中表示,允许现成的计划者根据机器人的感觉运动体验所提取的知识进行操作。模拟机器人操纵器的建议方法的部署使发现对象属性的离散表示,例如``滚动''和``插入''。反过来,将这些表示形式用作符号可以生成有效的计划来实现目标,例如建造所需高度的塔楼,证明了多步物体操纵方法的有效性。最后,我们证明了系统不仅通过评估其对MNIST 8个式式域的适用性来限于机器人域域,在该域​​中,学习的符号允许生成将空图块移至任何给定位置的计划。
translated by 谷歌翻译
3D场景图(3DSG)是新兴的描述;统一符号,拓扑和度量场景表示。但是,典型的3DSG即使在小环境中包含数百个对象和符号。完整图上的任务计划是不切实际的。我们构建任务法,这是第一个大规模的机器人任务计划基准3DSGS。尽管大多数基准在该领域的基准努力都集中在基于愿景的计划上,但我们系统地研究了符号计划,以使计划绩效与视觉表示学习相结合。我们观察到,在现有方法中,基于经典和学习的计划者都不能在完整的3DSG上实时计划。实现实时计划需要(a)稀疏3DSG进行可拖动计划的进展,以及(b)设计更好利用3DSG层次结构的计划者。针对前一个目标,我们提出了磨砂膏,这是一种由任务条件的3DSG稀疏方法。使经典计划者能够匹配,在某些情况下可以超过最新的学习计划者。我们提出寻求后一个目标,这是一种使学习计划者能够利用3DSG结构的程序,从而减少了当前最佳方法所需的重型查询数量的数量级。我们将开放所有代码和基线,以刺激机器人任务计划,学习和3DSGS的交叉点进行进一步的研究。
translated by 谷歌翻译
在对关节对象表示表示的工作之后,引入了面向对象的网络(FOON)作为机器人的知识图表示。以双方图的形式,Foon包含符号(高级)概念,可用于机器人对任务及其对象级别计划的环境的理解及其环境。在本文之前,几乎没有做任何事情来证明如何通过任务树检索从FOON获取的任务计划如何由机器人执行,因为Foon中的概念太抽象了,无法立即执行。我们提出了一种分层任务计划方法,该方法将FOON图转换为基于PDDL的域知识表示操作计划的表示。由于这个过程,可以获取一个任务计划,即机器人可以从头到尾执行,以利用动态运动原始功能(DMP)的形式使用动作上下文和技能。我们演示了从计划到使用Coppeliasim执行的整个管道,并展示如何将学习的动作上下文扩展到从未见过的场景。
translated by 谷歌翻译
为了有效地使用抽象(PDDL)规划域来在未知环境中实现目标,代理必须将这样的域与环境的对象及其属性实例化。如果代理具有Enocentric和环境的部分视图,则需要采取行动,感知和抽象规划域中的感知数据。此外,代理需要将符号规划器计算的计划编译成其执行器可执行的低级动作。本文提出了一个旨在实现上述角度的框架,并允许代理执行不同的任务。为此目的,我们集成了机器学习模型来摘要传感数据,符号规划目标成就和导航路径规划。我们在准确的模拟环境中评估了所提出的方法,其中传感器是RGB-D板载相机,GPS和指南针。
translated by 谷歌翻译
用于机器人操纵的多进球政策学习具有挑战性。先前的成功使用了对象的基于状态的表示或提供了演示数据来促进学习。在本文中,通过对域的高级离散表示形式进行手工编码,我们表明,可以使用来自像素的Q学习来学习达到数十个目标的策略。代理商将学习重点放在更简单的本地政策上,这些政策是通过在抽象空间中进行计划来对其进行测序的。我们将我们的方法与标准的多目标RL基线以及在具有挑战性的块构造域上利用离散表示的其他方法进行了比较。我们发现我们的方法可以构建一百多个不同的块结构,并证明具有新物体的结构向前转移。最后,我们将所学的政策部署在真正的机器人上的模拟中。
translated by 谷歌翻译
我们提出了Rapid-Learn:学习再次恢复和计划,即一种混合计划和学习方法,以解决适应代理环境中突然和意外变化(即新颖性)的问题。 Rapid-Learn旨在实时制定和求解任务的Markov决策过程(MDPS),并能够利用域知识来学习由环境变化引起的任何新动态。它能够利用域知识来学习行动执行者,这可以进一步用于解决执行智能,从而成功执行了计划。这种新颖信息反映在其更新的域模型中。我们通过在受到Minecraft启发的环境环境中引入各种新颖性来证明其功效,并将我们的算法与文献中的转移学习基线进行比较。我们的方法是(1)即使在存在多个新颖性的情况下,(2)比转移学习RL基准的样本有效,以及(3)与不完整的模型信息相比,与纯净的符号计划方法相反。
translated by 谷歌翻译
在工厂或房屋等环境中协助我们的机器人必须学会使用对象作为执行任务的工具,例如使用托盘携带对象。我们考虑了学习常识性知识何时可能有用的问题,以及如何与其他工具一起使用其使用以完成由人类指示的高级任务。具体而言,我们引入了一种新型的神经模型,称为Tooltango,该模型首先预测要使用的下一个工具,然后使用此信息来预测下一项动作。我们表明,该联合模型可以告知学习精细的策略,从而使机器人可以顺序使用特定工具,并在使模型更加准确的情况下增加了重要价值。 Tooltango使用图神经网络编码世界状态,包括对象和它们之间的符号关系,并使用人类教师的演示进行了培训,这些演示是指导物理模拟器中的虚拟机器人的演示。该模型学会了使用目标和动作历史的知识来参加场景,最终将符号动作解码为执行。至关重要的是,我们解决了缺少一些已知工具的看不见的环境的概括,但是存在其他看不见的工具。我们表明,通过通过从知识库中得出的预训练的嵌入来增强环境的表示,该模型可以有效地将其推广到新的环境中。实验结果表明,在预测具有看不见对象的新型环境中模拟移动操纵器的成功符号计划时,至少48.8-58.1%的绝对改善对基准的绝对改善。这项工作朝着使机器人能够快速合成复杂任务的强大计划的方向,尤其是在新颖的环境中
translated by 谷歌翻译
当前独立于域的经典计划者需要问题域和实例作为输入的符号模型,从而导致知识采集瓶颈。同时,尽管深度学习在许多领域都取得了重大成功,但知识是在与符号系统(例如计划者)不兼容的亚符号表示中编码的。我们提出了Latplan,这是一种无监督的建筑,结合了深度学习和经典计划。只有一组未标记的图像对,显示了环境中允许的过渡子集(训练输入),Latplan学习了环境的完整命题PDDL动作模型。稍后,当给出代表初始状态和目标状态(计划输入)的一对图像时,Latplan在符号潜在空间中找到了目标状态的计划,并返回可视化的计划执行。我们使用6个计划域的基于图像的版本来评估LATPLAN:8个插头,15个式嘴,Blockworld,Sokoban和两个LightsOut的变体。
translated by 谷歌翻译
虽然深增强学习已成为连续决策问题的有希望的机器学习方法,但对于自动驾驶或医疗应用等高利害域来说仍然不够成熟。在这种情况下,学习的政策需要例如可解释,因此可以在任何部署之前检查它(例如,出于安全性和验证原因)。本调查概述了各种方法,以实现加固学习(RL)的更高可解释性。为此,我们将解释性(作为模型的财产区分开来和解释性(作为HOC操作后的讲话,通过代理的干预),并在RL的背景下讨论它们,并强调前概念。特别是,我们认为可译文的RL可能会拥抱不同的刻面:可解释的投入,可解释(转型/奖励)模型和可解释的决策。根据该计划,我们总结和分析了与可解释的RL相关的最近工作,重点是过去10年来发表的论文。我们还简要讨论了一些相关的研究领域并指向一些潜在的有前途的研究方向。
translated by 谷歌翻译
我们研究了逻辑规范给出的复杂任务的学习策略问题。最近的方法从给定的规范自动生成奖励功能,并使用合适的加强学习算法来学习最大化预期奖励的策略。然而,这些方法对需要高级别计划的复杂任务奠定了差。在这项工作中,我们开发了一种称为Dirl的组成学习方法,可交织高级别的规划和强化学习。首先,Dirl将规范编码为抽象图;直观地,图的顶点和边缘分别对应于状态空间的区域和更简单的子任务。我们的方法然后结合了增强学习,以便在Dijkstra风格的规划算法内为每个边缘(子任务)学习神经网络策略,以计算图表中的高级计划。对具有连续状态和行动空间的一套具有挑战性的控制基准测试的提出方法的评估表明它优于最先进的基线。
translated by 谷歌翻译
Robotic planning in real-world scenarios typically requires joint optimization of logic and continuous variables. A core challenge to combine the strengths of logic planners and continuous solvers is the design of an efficient interface that informs the logical search about continuous infeasibilities. In this paper we present a novel iterative algorithm that connects logic planning with nonlinear optimization through a bidirectional interface, achieved by the detection of minimal subsets of nonlinear constraints that are infeasible. The algorithm continuously builds a database of graphs that represent (in)feasible subsets of continuous variables and constraints, and encodes this knowledge in the logical description. As a foundation for this algorithm, we introduce Planning with Nonlinear Transition Constraints (PNTC), a novel planning formulation that clarifies the exact assumptions our algorithm requires and can be applied to model Task and Motion Planning (TAMP) efficiently. Our experimental results show that our framework significantly outperforms alternative optimization-based approaches for TAMP.
translated by 谷歌翻译
This paper addresses the problem of reliably and efficiently solving broad classes of long-horizon stochastic path planning problems. Starting with a vanilla RL formulation with a stochastic dynamics simulator and an occupancy matrix of the environment, our approach computes useful options with policies as well as high-level paths that compose the discovered options. Our main contributions are (1) data-driven methods for creating abstract states that serve as endpoints for helpful options, (2) methods for computing option policies using auto-generated option guides in the form of dense pseudo-reward functions, and (3) an overarching algorithm for composing the computed options. We show that this approach yields strong guarantees of executability and solvability: under fairly general conditions, the computed option guides lead to composable option policies and consequently ensure downward refinability. Empirical evaluation on a range of robots, environments, and tasks shows that this approach effectively transfers knowledge across related tasks and that it outperforms existing approaches by a significant margin.
translated by 谷歌翻译
长期以来,能够接受和利用特定于人类的任务知识的增强学习(RL)代理人被认为是开发可扩展方法来解决长途问题的可能策略。尽管以前的作品已经研究了使用符号模型以及RL方法的可能性,但他们倾向于假设高级动作模型在低级别上是可执行的,并且流利者可以专门表征所有理想的MDP状态。但是,现实世界任务的符号模型通常是不完整的。为此,我们介绍了近似符号模型引导的增强学习,其中我们将正式化符号模型与基础MDP之间的关系,这将使我们能够表征符号模型的不完整性。我们将使用这些模型来提取将用于分解任务的高级地标。在低水平上,我们为地标确定的每个可能的任务次目标学习了一组不同的政策,然后将其缝合在一起。我们通过在三个不同的基准域进行测试来评估我们的系统,并显示即使是不完整的符号模型信息,我们的方法也能够发现任务结构并有效地指导RL代理到达目标。
translated by 谷歌翻译
虽然现代政策优化方法可以从感官数据进行复杂的操作,但他们对延长时间的地平线和多个子目标的问题挣扎。另一方面,任务和运动计划(夯实)方法规模缩放到长视野,但它们是计算昂贵的并且需要精确跟踪世界状态。我们提出了一种借鉴两种方法的方法:我们训练一项政策来模仿夯实求解器的输出。这产生了一种前馈策略,可以从感官数据完成多步任务。首先,我们构建一个异步分布式夯实求解器,可以快速产生足够的监督数据以进行模仿学习。然后,我们提出了一种分层策略架构,让我们使用部分训练的控制策略来加速夯实求解器。在具有7-自由度的机器人操纵任务中,部分训练有素的策略将规划所需的时间减少到2.6倍。在这些任务中,我们可以学习一个解决方案4对象拣选任务88%的策略从对象姿态观测和解决机器人9目标基准79%从RGB图像的时间(取平均值)跨越9个不同的任务)。
translated by 谷歌翻译