We propose a new approach to learning the subgrid-scale model effects when simulating partial differential equations (PDEs) solved by the method of lines and their representation in chaotic ordinary differential equations, based on neural ordinary differential equations (NODEs). Solving systems with fine temporal and spatial grid scales is an ongoing computational challenge, and closure models are generally difficult to tune. Machine learning approaches have increased the accuracy and efficiency of computational fluid dynamics solvers. In this approach neural networks are used to learn the coarse- to fine-grid map, which can be viewed as subgrid scale parameterization. We propose a strategy that uses the NODE and partial knowledge to learn the source dynamics at a continuous level. Our method inherits the advantages of NODEs and can be used to parameterize subgrid scales, approximate coupling operators, and improve the efficiency of low-order solvers. Numerical results using the two-scale Lorenz 96 ODE and the convection-diffusion PDE are used to illustrate this approach.
translated by 谷歌翻译
在许多学科中,动态系统的数据信息预测模型的开发引起了广泛的兴趣。我们提出了一个统一的框架,用于混合机械和机器学习方法,以从嘈杂和部分观察到的数据中识别动态系统。我们将纯数据驱动的学习与混合模型进行比较,这些学习结合了不完善的域知识。我们的公式与所选的机器学习模型不可知,在连续和离散的时间设置中都呈现,并且与表现出很大的内存和错误的模型误差兼容。首先,我们从学习理论的角度研究无内存线性(W.R.T.参数依赖性)模型误差,从而定义了过多的风险和概括误差。对于沿阵行的连续时间系统,我们证明,多余的风险和泛化误差都通过与T的正方形介于T的术语(指定训练数据的时间间隔)的术语界定。其次,我们研究了通过记忆建模而受益的方案,证明了两类连续时间复发性神经网络(RNN)的通用近似定理:两者都可以学习与内存有关的模型误差。此外,我们将一类RNN连接到储层计算,从而将学习依赖性错误的学习与使用随机特征在Banach空间之间进行监督学习的最新工作联系起来。给出了数值结果(Lorenz '63,Lorenz '96多尺度系统),以比较纯粹的数据驱动和混合方法,发现混合方法较少,渴望数据较少,并且更有效。最后,我们从数值上证明了如何利用数据同化来从嘈杂,部分观察到的数据中学习隐藏的动态,并说明了通过这种方法和培训此类模型来表示记忆的挑战。
translated by 谷歌翻译
在科学的背景下,众所周知的格言“一张图片胜过千言万语”可能是“一个型号胜过一千个数据集”。在本手稿中,我们将Sciml软件生态系统介绍作为混合物理法律和科学模型的信息,并使用数据驱动的机器学习方法。我们描述了一个数学对象,我们表示通用微分方程(UDE),作为连接生态系统的统一框架。我们展示了各种各样的应用程序,从自动发现解决高维汉密尔顿 - Jacobi-Bellman方程的生物机制,可以通过UDE形式主义和工具进行措辞和有效地处理。我们展示了软件工具的一般性,以处理随机性,延迟和隐式约束。这使得各种SCIML应用程序变为核心训练机构的核心集,这些训练机构高度优化,稳定硬化方程,并与分布式并行性和GPU加速器兼容。
translated by 谷歌翻译
尽管在整个科学和工程中都无处不在,但只有少数部分微分方程(PDE)具有分析或封闭形式的解决方案。这激发了有关PDE的数值模拟的大量经典工作,最近,对数据驱动技术的研究旋转了机器学习(ML)。最近的一项工作表明,与机器学习的经典数值技术的混合体可以对任何一种方法提供重大改进。在这项工作中,我们表明,在纳入基于物理学的先验时,数值方案的选择至关重要。我们以基于傅立叶的光谱方法为基础,这些光谱方法比其他数值方案要高得多,以模拟使用平滑且周期性解决方案的PDE。具体而言,我们为流体动力学的三个模型PDE开发了ML增强的光谱求解器,从而提高了标准光谱求解器在相同分辨率下的准确性。我们还展示了一些关键设计原则,用于将机器学习和用于解决PDE的数值方法结合使用。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
气候,化学或天体物理学中的数值模拟在计算上对于高分辨率下的不确定性定量或参数探索而言太昂贵。减少或替代模型的多个数量级更快,但是传统的替代物是僵化或不准确和纯机器学习(ML)基于基于数据的替代物。我们提出了一个混合,灵活的替代模型,该模型利用已知的物理学来模拟大规模动力学,并将学习到难以模拟的项,该术语称为参数化或闭合,并捕获了细界面对大型动力学的影响。利用神经操作员,我们是第一个学习独立于网格的,非本地和灵活的参数化的人。我们的\ textit {多尺度神经操作员}是由多尺度建模的丰富文献进行的,具有准线性运行时复杂性,比最先进的参数化更准确或更灵活,并且在混乱方程的多尺度lorenz96上证明。
translated by 谷歌翻译
数据驱动的湍流建模正在经历数据科学算法和硬件开发后的兴趣激增。我们讨论了一种使用可区分物理范式的方法,该方法将已知的物理学与机器学习结合起来,以开发汉堡湍流的闭合模型。我们将1D汉堡系统视为一种原型测试问题,用于建模以对流为主的湍流问题中未解决的术语。我们训练一系列模型,这些模型在后验损失函数上结合了不同程度的物理假设,以测试模型在一系列系统参数(包括粘度,时间和网格分辨率)上的疗效。我们发现,以部分微分方程形式的归纳偏差的约束模型包含已知物理或现有闭合方法会产生高度数据效率,准确和可推广的模型,并且表现优于最先进的基准。以物理信息形式添加结构还为模型带来了一定程度的解释性,可能为封闭建模的未来提供了垫脚石。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
基于合奏的大规模模拟动态系统对于广泛的科学和工程问题至关重要。模拟中使用的常规数值求解器受到时间整合的步长显着限制,这会阻碍效率和可行性,尤其是在需要高精度的情况下。为了克服这一限制,我们提出了一种数据驱动的校正方法,该方法允许使用大型步骤,同时补偿了积分误差以提高精度。该校正器以矢量值函数的形式表示,并通过神经网络建模以回归相空间中的误差。因此,我们将校正神经矢量(Neurvec)命名。我们表明,Neurvec可以达到与传统求解器具有更大步骤尺寸的传统求解器相同的准确性。我们从经验上证明,Neurvec可以显着加速各种数值求解器,并克服这些求解器的稳定性限制。我们关于基准问题的结果,从高维问题到混乱系统,表明Neurvec能够捕获主要的误差项并保持整体预测的统计数据。
translated by 谷歌翻译
我们提出了一种基于物理知识的随机投影神经网络的数值方法,用于解决常微分方程(ODES)的初始值问题(IVPS)的解决方案,重点是僵硬的问题。我们使用具有径向基函数的单个隐藏层来解决一个极端学习机,其具有宽度均匀分布的随机变量,而输入和隐藏层之间的权重的值设置为等于1。通过构造非线性代数方程的系统来获得IVPS的数值解决方案,该系统由高斯-Nythto方法通过Gauss-Newton方法解决了输出权重,以调整集成时间间隔的简单自适应方案。为了评估其性能,我们应用了四个基准僵硬IVPS解决方案的提议方法,即预热罗宾逊,梵德,罗伯和雇用问题。我们的方法与基于Dormand-Prince对的自适应跳动-Kutta方法进行比较,以及基于数值差分公式的可变步骤可变序列多步解算器,如\ texttt {ode45}和\ texttt {ode15s}所实现的MATLAB功能分别。我们表明所提出的方案产生良好的近似精度,从而优于\ texttt {ode45}和\ texttt {ode15s},尤其是在出现陡峭梯度的情况下。此外,我们的方法的计算时间与两种Matlab溶剂的计算时间用于实际目的。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
差分方程管理的学习动态对于预测和控制科学和工程系统来说至关重要。神经常规方程(节点)是一种与微分方程集成的深度学习模型,最近是由于其对不规则样本的鲁棒性及其对高维输入的灵活性而流行的学习动态。然而,节点的训练对数值求解器的精度敏感,这使得节点的收敛不稳定,特别是对于不稳定的动态系统。在本文中,为了减少对数值求解器的依赖,我们建议提高节点训练中的监督信号。具体地,我们预先训练神经差分运算符(NDO)以输出衍生物的估计用作额外的监督信号。 NDO在一类基础函数上预先培训,并将这些功能的轨迹样本之间的映射学习到其衍生物。为了利用来自NDO的轨迹信号和估计的衍生工具,我们提出了一种称为NDO-Node的算法,其中损耗函数包含两个术语:真正轨迹样本的适应性以及由输出的估计衍生物的适应度预先训练的NDO。各种动力学的实验表明,我们提出的NDO-Node可以一致地用一个预先训练的NDO来改善预测精度。特别是对于僵硬的杂散,我们观察到与其他正则化方法相比,NDO-Node可以更准确地捕获动态的过渡。
translated by 谷歌翻译
神经运营商最近成为设计神经网络形式的功能空间之间的解决方案映射的流行工具。不同地,从经典的科学机器学习方法,以固定分辨率为输入参数的单个实例学习参数,神经运算符近似PDE系列的解决方案图。尽管他们取得了成功,但是神经运营商的用途迄今为止仅限于相对浅的神经网络,并限制了学习隐藏的管理法律。在这项工作中,我们提出了一种新颖的非局部神经运营商,我们将其称为非本体内核网络(NKN),即独立的分辨率,其特征在于深度神经网络,并且能够处理各种任务,例如学习管理方程和分类图片。我们的NKN源于神经网络的解释,作为离散的非局部扩散反应方程,在无限层的极限中,相当于抛物线非局部方程,其稳定性通过非本种载体微积分分析。与整体形式的神经运算符相似允许NKN捕获特征空间中的远程依赖性,而节点到节点交互的持续处理使NKNS分辨率独立于NKNS分辨率。与神经杂物中的相似性,在非本体意义上重新解释,并且层之间的稳定网络动态允许NKN的最佳参数从浅到深网络中的概括。这一事实使得能够使用浅层初始化技术。我们的测试表明,NKNS在学习管理方程和图像分类任务中占据基线方法,并概括到不同的分辨率和深度。
translated by 谷歌翻译
随机偏微分方程(SPDES)是在随机性影响下模拟动态系统的选择的数学工具。通过将搜索SPDE的温和解决方案作为神经定点问题,我们介绍了神经SPDE模型,以便从部分观察到的数据中使用(可能随机)的PDE溶液运营商。我们的模型为两类物理启发神经架构提供了扩展。一方面,它延伸了神经CDES,SDES,RDE - RNN的连续时间类似物,因为即使当后者在无限尺寸状态空间中演变时,它也能够处理进入的顺序信息。另一方面,它扩展了神经运营商 - 神经网络的概括到函数空间之间的模型映射 - 因为它可以用于学习解决方案运算符$(U_0,\ xi)\ MapSto U $同时上的SPDES初始条件$ u_0 $和驾驶噪声$ \ xi $的实现。神经SPDE是不变的,它可以使用基于记忆有效的隐式分化的反向化的训练,并且一旦接受训练,其评估比传统求解器快3个数量级。在包括2D随机Navier-Stokes方程的各种半线性SPDES的实验证明了神经间隙如何能够以更好的准确性学习复杂的时空动态,并仅使用适度的培训数据与所有替代模型相比。
translated by 谷歌翻译
在本文中,我们根据卷积神经网络训练湍流模型。这些学到的湍流模型改善了在模拟时为不可压缩的Navier-Stokes方程的溶解不足的低分辨率解。我们的研究涉及开发可区分的数值求解器,该求解器通过多个求解器步骤支持优化梯度的传播。这些属性的重要性是通过那些模型的出色稳定性和准确性来证明的,这些模型在训练过程中展开了更多求解器步骤。此外,我们基于湍流物理学引入损失项,以进一步提高模型的准确性。这种方法应用于三个二维的湍流场景,一种均匀的腐烂湍流案例,一个暂时进化的混合层和空间不断发展的混合层。与无模型模拟相比,我们的模型在长期A-posterii统计数据方面取得了重大改进,而无需将这些统计数据直接包含在学习目标中。在推论时,我们提出的方法还获得了相似准确的纯粹数值方法的实质性改进。
translated by 谷歌翻译
非线性部分差分差异方程成功地用于描述自然科学,工程甚至金融中的广泛时间依赖性现象。例如,在物理系统中,Allen-Cahn方程描述了与相变相关的模式形成。相反,在金融中,黑色 - choles方程描述了衍生投资工具价格的演变。这种现代应用通常需要在经典方法无效的高维度中求解这些方程。最近,E,Han和Jentzen [1] [2]引入了一种有趣的新方法。主要思想是构建一个深网,该网络是根据科尔莫戈罗夫方程式下离散的随机微分方程样本进行训练的。该网络至少能够在数值上近似,在整个空间域中具有多项式复杂性的Kolmogorov方程的解。在这一贡献中,我们通过使用随机微分方程的不同离散方案来研究深网的变体。我们在基准的示例上比较了相关网络的性能,并表明,对于某些离散方案,可以改善准确性,而不会影响观察到的计算复杂性。
translated by 谷歌翻译
在这项工作中,我们提出了一种自适应的稀疏学习算法,可以应用于学习物理过程并获得较大的快照空间的溶液的稀疏表示。假设有一类丰富的预定基础函数可以用来近似关注数量。然后,我们设计了一个神经网络体系结构,以学习由这些基础功能跨越的空间中的解决方案系数。基本函数的信息已纳入损耗函数,这最大程度地减少了在多个时间步长下缩小的减少订单解决方案和参考解决方案之间的差异。该网络包含多个子模块,并且可以同时学习不同时间步骤的解决方案。我们在学习框架中提出了一些策略,以确定重要的自由度。为了找到稀疏的溶液表示形式,应用软阈值操作员来强制神经网络的输出系数向量的稀疏性。为了避免过度简化并丰富近似空间,可以通过贪婪的算法将一些自由度添加回系统。在这两种情况下,即删除和添加自由度,相应的网络连接都是由从网络输出获得的解决方案系数的大小来修剪或重新激导的。提出的自适应学习过程适用于某些玩具案例示例,以证明它可以实现良好的基础选择和准确的近似。对两阶段多尺度流问题进行了更多的数值测试,以显示复杂应用程序所提出的方法的能力和解释性。
translated by 谷歌翻译
These notes were compiled as lecture notes for a course developed and taught at the University of the Southern California. They should be accessible to a typical engineering graduate student with a strong background in Applied Mathematics. The main objective of these notes is to introduce a student who is familiar with concepts in linear algebra and partial differential equations to select topics in deep learning. These lecture notes exploit the strong connections between deep learning algorithms and the more conventional techniques of computational physics to achieve two goals. First, they use concepts from computational physics to develop an understanding of deep learning algorithms. Not surprisingly, many concepts in deep learning can be connected to similar concepts in computational physics, and one can utilize this connection to better understand these algorithms. Second, several novel deep learning algorithms can be used to solve challenging problems in computational physics. Thus, they offer someone who is interested in modeling a physical phenomena with a complementary set of tools.
translated by 谷歌翻译
在这项工作中,我们介绍,证明并展示了纠正源期限方法(Costa) - 一种新的混合分析和建模(火腿)的新方法。 HAM的目标是将基于物理的建模(PBM)和数据驱动的建模(DDM)组合,以创建概括,值得信赖,准确,计算高效和自我不断发展的模型。 Costa通过使用深神经网络产生的纠正源期限增强PBM模型的控制方程来实现这一目标。在一系列关于一维热扩散的数值实验中,发现CostA在精度方面优于相当的DDM和PBM模型 - 通常通过几个数量级降低预测误差 - 同时也比纯DDM更好地概括。由于其灵活而稳定的理论基础,Costa提供了一种模块化框架,用于利用PBM和DDM中的新颖开发。其理论基础还确保了哥斯达队可以用来模拟由(确定性)部分微分方程所控制的任何系统。此外,Costa有助于在PBM的背景下解释DNN生成的源术语,这导致DNN的解释性改善。这些因素使哥斯达成为数据驱动技术的潜在门开启者,以进入先前为纯PBM保留的高赌注应用。
translated by 谷歌翻译