图神经网络(GNN)是一类流行的机器学习模型。受到学习解释(L2X)范式的启发,我们提出了L2XGNN,这是一个可解释的GNN的框架,该框架通过设计提供了忠实的解释。L2XGNN学习了一种选择解释性子图(主题)的机制,该机制仅在GNNS消息通话操作中使用。L2XGNN能够为每个输入图选择具有特定属性的子图,例如稀疏和连接。对主题施加这种限制通常会导致更容易解释和有效的解释。几个数据集的实验表明,L2XGNN使用整个输入图实现了与基线方法相同的分类精度,同时确保仅使用提供的解释来进行预测。此外,我们表明L2XGNN能够识别负责预测图形属性的主题。
translated by 谷歌翻译
Graph Neural Networks (GNNs) are a powerful tool for machine learning on graphs. GNNs combine node feature information with the graph structure by recursively passing neural messages along edges of the input graph. However, incorporating both graph structure and feature information leads to complex models and explaining predictions made by GNNs remains unsolved. Here we propose GNNEXPLAINER, the first general, model-agnostic approach for providing interpretable explanations for predictions of any GNN-based model on any graph-based machine learning task. Given an instance, GNNEXPLAINER identifies a compact subgraph structure and a small subset of node features that have a crucial role in GNN's prediction. Further, GNNEXPLAINER can generate consistent and concise explanations for an entire class of instances. We formulate GNNEXPLAINER as an optimization task that maximizes the mutual information between a GNN's prediction and distribution of possible subgraph structures. Experiments on synthetic and real-world graphs show that our approach can identify important graph structures as well as node features, and outperforms alternative baseline approaches by up to 43.0% in explanation accuracy. GNNEXPLAINER provides a variety of benefits, from the ability to visualize semantically relevant structures to interpretability, to giving insights into errors of faulty GNNs.
translated by 谷歌翻译
With the increasing use of Graph Neural Networks (GNNs) in critical real-world applications, several post hoc explanation methods have been proposed to understand their predictions. However, there has been no work in generating explanations on the fly during model training and utilizing them to improve the expressive power of the underlying GNN models. In this work, we introduce a novel explanation-directed neural message passing framework for GNNs, EXPASS (EXplainable message PASSing), which aggregates only embeddings from nodes and edges identified as important by a GNN explanation method. EXPASS can be used with any existing GNN architecture and subgraph-optimizing explainer to learn accurate graph embeddings. We theoretically show that EXPASS alleviates the oversmoothing problem in GNNs by slowing the layer wise loss of Dirichlet energy and that the embedding difference between the vanilla message passing and EXPASS framework can be upper bounded by the difference of their respective model weights. Our empirical results show that graph embeddings learned using EXPASS improve the predictive performance and alleviate the oversmoothing problems of GNNs, opening up new frontiers in graph machine learning to develop explanation-based training frameworks.
translated by 谷歌翻译
尽管近期图形神经网络(GNN)进展,但解释了GNN的预测仍然具有挑战性。现有的解释方法主要专注于后性后解释,其中采用另一种解释模型提供培训的GNN的解释。后HOC方法未能揭示GNN的原始推理过程的事实引发了建立GNN与内置解释性的需求。在这项工作中,我们提出了原型图形神经网络(Protgnn),其将原型学习与GNNS相结合,并提供了对GNN的解释的新视角。在Protgnn中,解释自然地从基于案例的推理过程衍生,并且实际在分类期间使用。通过将输入与潜伏空间中的一些学习原型的输入进行比较来获得ProtGnn的预测。此外,为了更好地解释性和更高的效率,结合了一种新颖的条件子图采样模块,以指示输入图的哪个部分与ProtGnn +中的每个原型最相似。最后,我们在各种数据集中评估我们的方法并进行具体的案例研究。广泛的结果表明,Protgnn和Protgnn +可以提供固有的解释性,同时实现与非可解释对方的准确性有关的准确性。
translated by 谷歌翻译
In this paper, we investigate the degree of explainability of graph neural networks (GNNs). Existing explainers work by finding global/local subgraphs to explain a prediction, but they are applied after a GNN has already been trained. Here, we propose a meta-learning framework for improving the level of explainability of a GNN directly at training time, by steering the optimization procedure towards what we call `interpretable minima'. Our framework (called MATE, MetA-Train to Explain) jointly trains a model to solve the original task, e.g., node classification, and to provide easily processable outputs for downstream algorithms that explain the model's decisions in a human-friendly way. In particular, we meta-train the model's parameters to quickly minimize the error of an instance-level GNNExplainer trained on-the-fly on randomly sampled nodes. The final internal representation relies upon a set of features that can be `better' understood by an explanation algorithm, e.g., another instance of GNNExplainer. Our model-agnostic approach can improve the explanations produced for different GNN architectures and use any instance-based explainer to drive this process. Experiments on synthetic and real-world datasets for node and graph classification show that we can produce models that are consistently easier to explain by different algorithms. Furthermore, this increase in explainability comes at no cost for the accuracy of the model.
translated by 谷歌翻译
深度学习方法正在实现许多人工智能任务上的不断增长。深层模型的一个主要局限性是它们不适合可解释性。可以通过开发事后技术来解释预测,从而产生解释性领域,从而规避这种限制。最近,关于图像和文本的深层模型的解释性取得了重大进展。在图数据的领域,图形神经网络(GNN)及其解释性正在迅速发展。但是,既没有对GNN解释性方法的统一处理,也没有标准的基准和测试床。在这项调查中,我们提供了当前GNN解释性方法的统一和分类观点。我们对这一主题的统一和分类治疗对现有方法的共同性和差异阐明了灯光,并为进一步的方法论发展奠定了基础。为了促进评估,我们生成了一组专门用于GNN解释性的基准图数据集。我们总结了当前的数据集和指标,以评估GNN的解释性。总的来说,这项工作提供了GNN解释性和评估标准化测试床的统一方法论。
translated by 谷歌翻译
最近,引入了亚图增强图神经网络(SGNN),以增强图形神经网络(GNN)的表达能力,事实证明,该功能不高于一维Weisfeiler-Leman同构测试。新的范式建议使用从输入图中提取的子图提高模型的表现力,但是额外的复杂性加剧了GNNS中本来可以具有挑战性的问题:解释其预测。在这项工作中,我们将PGEXPlainer(GNNS的最新解释者之一)改编为SGNN。拟议的解释器解释了所有不同子图的贡献,并可以产生人类可以解释的有意义的解释。我们在真实和合成数据集上执行的实验表明,我们的框架成功地解释了SGNN在图形分类任务上的决策过程。
translated by 谷歌翻译
我们研究了图神经网络(GNN)的解释性,作为阐明其工作机制的一步。尽管大多数当前方法都集中在解释图节点,边缘或功能上,但我们认为,作为GNNS的固有功能机制,消息流对执行解释性更为自然。为此,我们在这里提出了一种新颖的方法,即FlowX,以通过识别重要的消息流来解释GNN。为了量化流量的重要性,我们建议遵循合作游戏理论中沙普利价值观的哲学。为了解决计算所有联盟边际贡献的复杂性,我们提出了一个近似方案,以计算类似沙普利的值,作为进一步再分配训练的初步评估。然后,我们提出一种学习算法来训练流量评分并提高解释性。关于合成和现实世界数据集的实验研究表明,我们提出的FlowX导致GNN的解释性提高。
translated by 谷歌翻译
在高措施应用中大量部署图神经网络(GNNS)对对噪声的强大解释产生了强烈的需求,这些解释与人类的直觉很好。大多数现有方法通过识别与预测有很强相关性的输入图的子图来生成解释。这些解释对噪声并不强大,因为独立优化单个输入的相关性很容易过分拟合噪声。此外,它们与人类直觉并不十分吻合,因为从输入图中删除已识别的子图并不一定会改变预测结果。在本文中,我们提出了一种新颖的方法,可以通过在类似的输入图上明确建模GNNS的共同决策逻辑来生成对GNN的强大反事实解释。我们的解释自然对噪声是强大的,因为它们是由控制许多类似输入图的GNN的共同决策边界产生的。该解释也与人类的直觉很好地吻合,因为从输入图中的解释中删除了一组边缘,从而显着改变了预测。许多公共数据集上的详尽实验证明了我们方法的出色性能。
translated by 谷歌翻译
解释机器学习决策的问题是经过深入研究和重要的。我们对一种涉及称为图形神经网络的图形数据的特定类型的机器学习模型感兴趣。众所周知,由于缺乏公认的基准,评估图形神经网络(GNN)的可解释性方法是具有挑战性的。鉴于GNN模型,存在几种可解释性方法来解释具有多种(有时相互矛盾的)方法论的GNN模型。在本文中,我们提出了一个基准,用于评估称为Bagel的GNN的解释性方法。在百吉饼中,我们首先提出了四种不同的GNN解释评估制度 - 1)忠诚,2)稀疏性,3)正确性。 4)合理性。我们在现有文献中调和多个评估指标,并涵盖了各种概念以进行整体评估。我们的图数据集范围从引文网络,文档图,到分子和蛋白质的图。我们对四个GNN模型和九个有关节点和图形分类任务的事后解释方法进行了广泛的实证研究。我们打开基准和参考实现,并在https://github.com/mandeep-rathee/bagel-benchmark上提供它们。
translated by 谷歌翻译
最近出现了许多子图增强图神经网络(GNN),可证明增强了标准(消息通话)GNN的表达能力。但是,对这些方法之间的相互关系和weisfeiler层次结构的关系有限。此外,当前的方法要么使用给定尺寸的所有子图,要随机均匀地对其进行采样,或者使用手工制作的启发式方法,而不是学习以数据驱动的方式选择子图。在这里,我们提供了一种统一的方法来研究此类体系结构,通过引入理论框架并扩展了亚图增强GNN的已知表达结果。具体而言,我们表明,增加子图的大小总是会增加表达能力,并通过将它们与已建立的$ k \ text { - } \ Mathsf {Wl} $ hierArchy联系起来,从而更好地理解其局限性。此外,我们还使用最近通过复杂的离散概率分布进行反向传播的方法探索了学习对子图进行采样的不同方法。从经验上讲,我们研究了不同子图增强的GNN的预测性能,表明我们的数据驱动体系结构与非DATA驱动的亚图增强图形神经网络相比,在标准基准数据集上提高了对标准基准数据集的预测准确性,同时减少了计算时间。
translated by 谷歌翻译
由于事后解释越来越多地用于了解图神经网络(GNN)的行为,因此评估GNN解释的质量和可靠性至关重要。但是,评估GNN解释的质量是具有挑战性的,因为现有的图形数据集对给定任务没有或不可靠的基础真相解释。在这里,我们介绍了一个合成图数据生成器ShapeGgen,该生成可以生成各种基准数据集(例如,不同的图形大小,度分布,同粒细胞与异性图)以及伴随着地面真相解释。此外,生成各种合成数据集和相应的基础真相解释的灵活性使我们能够模仿各种现实世界应用程序生成的数据。我们将ShapeGgen和几个现实图形数据集包括在开源图形图库GraphXai中。除了带有基础真相说明的合成和现实图形数据集外,GraphXAI还提供数据加载程序,数据处理功能,可视化器,GNN模型实现和评估指标,以基准基准GNN解释性方法的性能。
translated by 谷歌翻译
Uncovering rationales behind predictions of graph neural networks (GNNs) has received increasing attention over recent years. Instance-level GNN explanation aims to discover critical input elements, like nodes or edges, that the target GNN relies upon for making predictions. Though various algorithms are proposed, most of them formalize this task by searching the minimal subgraph which can preserve original predictions. However, an inductive bias is deep-rooted in this framework: several subgraphs can result in the same or similar outputs as the original graphs. Consequently, they have the danger of providing spurious explanations and fail to provide consistent explanations. Applying them to explain weakly-performed GNNs would further amplify these issues. To address this problem, we theoretically examine the predictions of GNNs from the causality perspective. Two typical reasons of spurious explanations are identified: confounding effect of latent variables like distribution shift, and causal factors distinct from the original input. Observing that both confounding effects and diverse causal rationales are encoded in internal representations, we propose a simple yet effective countermeasure by aligning embeddings. Concretely, concerning potential shifts in the high-dimensional space, we design a distribution-aware alignment algorithm based on anchors. This new objective is easy to compute and can be incorporated into existing techniques with no or little effort. Theoretical analysis shows that it is in effect optimizing a more faithful explanation objective in design, which further justifies the proposed approach.
translated by 谷歌翻译
由于图形神经网络(GNN)在各个域中的出色性能,因此对GNN解释问题越来越感兴趣“ \ emph {输入图的哪一部分是决定模型决定的最关键?}“现有的解释?方法集中在监督的设置,例如节点分类和图形分类上,而无监督的图形表示学习的解释仍未探索。当部署高级决策情况时,图表表示的不透明可能会导致意外风险。在本文中,我们推进了信息瓶颈原理(IB),以解决无监督的图表表示所提出的解释问题,这导致了一个新颖的原理,\ textit {无监督的子图表信息瓶颈}(USIB)。我们还理论上分析了标签空间上图表和解释子图之间的联系,这表明表示的表现力和鲁棒性有益于解释性子图的保真度。合成和现实世界数据集的实验结果证明了我们发达的解释器的优越性以及我们的理论分析的有效性。
translated by 谷歌翻译
最近,图形神经网络(GNN)显着提高了图形上机器学习任务的性能。但是,这一技术突破使人们感到奇怪:GNN如何做出这样的决定,我们可以高度信心信任它的预测吗?当涉及到一些关键领域(例如生物医学)时,做出错误的决策可能会产生严重的后果,在应用它们之前解释GNN的内部工作机制至关重要。在本文中,我们为遵循消息传递方案GnnInterPreter的不同GNN的新型模型模型级解释方法提出了一种新颖的模型级解释方法,以解释GNN模型的高级决策过程。更具体地说,通过图形的连续放松和重新聚集技巧,GnnInterPreter学习了概率生成图分布,该分布在GNN模型的眼中生成了目标预测的最具代表性图。与唯一的现有作品相比,GnnInterPreter在生成具有不同类型的节点功能和边缘功能的解释图时更加有效,更灵活,而无需引入另一个Blackbox来解释GNN,而无需特定领域的知识。此外,在四个不同数据集上进行的实验研究表明,当模型是理想的情况下,GnnInterPreter生成的解释图可以匹配所需的图形模式,并揭示了如果存在任何模型。
translated by 谷歌翻译
图形内核是历史上最广泛使用的图形分类任务的技术。然而,由于图的手工制作的组合特征,这些方法具有有限的性能。近年来,由于其性能卓越,图形神经网络(GNNS)已成为与下游图形相关任务的最先进的方法。大多数GNN基于消息传递神经网络(MPNN)框架。然而,最近的研究表明,MPNN不能超过Weisfeiler-Lehman(WL)算法在图形同构术中的力量。为了解决现有图形内核和GNN方法的限制,在本文中,我们提出了一种新的GNN框架,称为\ Texit {内核图形神经网络}(Kernnns),该框架将图形内核集成到GNN的消息传递过程中。通过卷积神经网络(CNNS)中的卷积滤波器的启发,KERGNNS采用可训练的隐藏图作为绘图过滤器,该绘图过滤器与子图组合以使用图形内核更新节点嵌入式。此外,我们表明MPNN可以被视为Kergnns的特殊情况。我们将Kergnns应用于多个与图形相关的任务,并使用交叉验证来与基准进行公平比较。我们表明,与现有的现有方法相比,我们的方法达到了竞争性能,证明了增加GNN的表现能力的可能性。我们还表明,KERGNNS中的训练有素的图形过滤器可以揭示数据集的本地图形结构,与传统GNN模型相比,显着提高了模型解释性。
translated by 谷歌翻译
With the rapid deployment of graph neural networks (GNNs) based techniques into a wide range of applications such as link prediction, node classification, and graph classification the explainability of GNNs has become an indispensable component for predictive and trustworthy decision-making. Thus, it is critical to explain why graph neural network (GNN) makes particular predictions for them to be believed in many applications. Some GNNs explainers have been proposed recently. However, they lack to generate accurate and real explanations. To mitigate these limitations, we propose GANExplainer, based on Generative Adversarial Network (GAN) architecture. GANExplainer is composed of a generator to create explanations and a discriminator to assist with the Generator development. We investigate the explanation accuracy of our models by comparing the performance of GANExplainer with other state-of-the-art methods. Our empirical results on synthetic datasets indicate that GANExplainer improves explanation accuracy by up to 35\% compared to its alternatives.
translated by 谷歌翻译
Explaining machine learning models is an important and increasingly popular area of research interest. The Shapley value from game theory has been proposed as a prime approach to compute feature importance towards model predictions on images, text, tabular data, and recently graph neural networks (GNNs) on graphs. In this work, we revisit the appropriateness of the Shapley value for GNN explanation, where the task is to identify the most important subgraph and constituent nodes for GNN predictions. We claim that the Shapley value is a non-ideal choice for graph data because it is by definition not structure-aware. We propose a Graph Structure-aware eXplanation (GStarX) method to leverage the critical graph structure information to improve the explanation. Specifically, we define a scoring function based on a new structure-aware value from the cooperative game theory proposed by Hamiache and Navarro (HN). When used to score node importance, the HN value utilizes graph structures to attribute cooperation surplus between neighbor nodes, resembling message passing in GNNs, so that node importance scores reflect not only the node feature importance, but also the node structural roles. We demonstrate that GStarX produces qualitatively more intuitive explanations, and quantitatively improves explanation fidelity over strong baselines on chemical graph property prediction and text graph sentiment classification.
translated by 谷歌翻译
增强图在正规化图形神经网络(GNNS)方面起着至关重要的作用,该图形以信息传递的形式利用沿图的边缘进行信息交换。由于其有效性,简单的边缘和节点操作(例如,添加和删除)已被广泛用于图表增强中。然而,这种常见的增强技术可以显着改变原始图的语义,从而导致过度侵略性增强,从而在GNN学习中拟合不足。为了解决掉落或添加图形边缘和节点引起的此问题,我们提出了SoftEdge,将随机权重分配给给定图的一部分以进行增强。 SoftEdge生成的合成图保持与原始图相同的节点及其连接性,从而减轻原始图的语义变化。我们从经验上表明,这种简单的方法获得了与流行节点和边缘操纵方法的卓越精度,并且具有明显的弹性,可抵御GNN深度的准确性降解。
translated by 谷歌翻译
Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs-a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DIFFPOOL, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DIFFPOOL learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DIFFPOOL yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.
translated by 谷歌翻译