Indoor scenes typically exhibit complex, spatially-varying appearance from global illumination, making inverse rendering a challenging ill-posed problem. This work presents an end-to-end, learning-based inverse rendering framework incorporating differentiable Monte Carlo raytracing with importance sampling. The framework takes a single image as input to jointly recover the underlying geometry, spatially-varying lighting, and photorealistic materials. Specifically, we introduce a physically-based differentiable rendering layer with screen-space ray tracing, resulting in more realistic specular reflections that match the input photo. In addition, we create a large-scale, photorealistic indoor scene dataset with significantly richer details like complex furniture and dedicated decorations. Further, we design a novel out-of-view lighting network with uncertainty-aware refinement leveraging hypernetwork-based neural radiance fields to predict lighting outside the view of the input photo. Through extensive evaluations on common benchmark datasets, we demonstrate superior inverse rendering quality of our method compared to state-of-the-art baselines, enabling various applications such as complex object insertion and material editing with high fidelity. Code and data will be made available at \url{https://jingsenzhu.github.io/invrend}.
translated by 谷歌翻译
我们提出了一种从单个图像中编辑复杂室内照明的方法,其深度和光源分割掩码。这是一个极具挑战性的问题,需要对复杂的光传输进行建模,并仅通过对场景的部分LDR观察,将HDR照明从材料和几何形状中解散。我们使用两个新颖的组件解决了这个问题:1)一种整体场景重建方法,该方法估计场景反射率和参数3D照明,以及2)一个神经渲染框架,从我们的预测中重新呈现场景。我们使用基于物理的室内光表示,可以进行直观的编辑,并推断可见和看不见的光源。我们的神经渲染框架结合了基于物理的直接照明和阴影渲染,深层网络近似于全球照明。它可以捕获具有挑战性的照明效果,例如柔软的阴影,定向照明,镜面材料和反射。以前的单个图像逆渲染方法通常纠缠场景照明和几何形状,仅支持对象插入等应用程序。取而代之的是,通过将参数3D照明估计与神经场景渲染相结合,我们演示了从单个图像中实现完整场景重新确定(包括光源插入,删除和替换)的第一种自动方法。所有源代码和数据将公开发布。
translated by 谷歌翻译
我们考虑了户外照明估算的挑战性问题,即影像逼真的虚拟对象将其插入照片中的目标。现有在室外照明估计的作品通常将场景照明简化为环境图,该图无法捕获室外场景中的空间变化的照明效果。在这项工作中,我们提出了一种神经方法,该方法可以从单个图像中估算5D HDR光场,以及一个可区分的对象插入公式,该公式可以通过基于图像的损失来端对端训练,从而鼓励现实主义。具体而言,我们设计了针对室外场景量身定制的混合照明表示,其中包含一个HDR Sky Dome,可处理太阳的极端强度,并具有体积的照明表示,该代表模拟了周围场景的空间变化外观。通过估计的照明,我们的阴影感知对象插入是完全可区分的,这使得对复合图像的对抗训练可以为照明预测提供其他监督信号。我们在实验上证明,混合照明表示比现有的室外照明估计方法更具性能。我们进一步显示了AR对象插入在自主驾驶应用程序中的好处,在对我们的增强数据进行培训时,我们可以在其中获得3D对象检测器的性能提高。
translated by 谷歌翻译
We present a multi-view inverse rendering method for large-scale real-world indoor scenes that reconstructs global illumination and physically-reasonable SVBRDFs. Unlike previous representations, where the global illumination of large scenes is simplified as multiple environment maps, we propose a compact representation called Texture-based Lighting (TBL). It consists of 3D meshs and HDR textures, and efficiently models direct and infinite-bounce indirect lighting of the entire large scene. Based on TBL, we further propose a hybrid lighting representation with precomputed irradiance, which significantly improves the efficiency and alleviate the rendering noise in the material optimization. To physically disentangle the ambiguity between materials, we propose a three-stage material optimization strategy based on the priors of semantic segmentation and room segmentation. Extensive experiments show that the proposed method outperforms the state-of-the-arts quantitatively and qualitatively, and enables physically-reasonable mixed-reality applications such as material editing, editable novel view synthesis and relighting. The project page is at https://lzleejean.github.io/TexIR.
translated by 谷歌翻译
传统上,本征成像或内在图像分解被描述为将图像分解为两层:反射率,材料的反射率;和一个阴影,由光和几何之间的相互作用产生。近年来,深入学习技术已广泛应用,以提高这些分离的准确性。在本调查中,我们概述了那些在知名内在图像数据集和文献中使用的相关度量的结果,讨论了预测所需的内在图像分解的适用性。虽然Lambertian的假设仍然是许多方法的基础,但我们表明,对图像形成过程更复杂的物理原理组件的潜力越来越意识到,这是光学准确的材料模型和几何形状,更完整的逆轻型运输估计。考虑使用的前瞻和模型以及驾驶分解过程的学习架构和方法,我们将这些方法分类为分解的类型。考虑到最近神经,逆和可微分的渲染技术的进步,我们还提供了关于未来研究方向的见解。
translated by 谷歌翻译
我们建议使用以光源方向为条件的神经辐射场(NERF)的扩展来解决多视光度立体声问题。我们神经表示的几何部分预测表面正常方向,使我们能够理解局部表面反射率。我们的神经表示的外观部分被分解为神经双向反射率函数(BRDF),作为拟合过程的一部分学习,阴影预测网络(以光源方向为条件),使我们能够对明显的BRDF进行建模。基于物理图像形成模型的诱导偏差的学到的组件平衡使我们能够远离训练期间观察到的光源和查看器方向。我们证明了我们在多视光学立体基准基准上的方法,并表明可以通过NERF的神经密度表示可以获得竞争性能。
translated by 谷歌翻译
Google Research Basecolor Metallic Roughness Normal Multi-View Images NeRD Volume Decomposed BRDF Relighting & View synthesis Textured MeshFigure 1: Neural Reflectance Decomposition for Relighting. We encode multiple views of an object under varying or fixed illumination into the NeRD volume.We decompose each given image into geometry, spatially-varying BRDF parameters and a rough approximation of the incident illumination in a globally consistent manner. We then extract a relightable textured mesh that can be re-rendered under novel illumination conditions in real-time.
translated by 谷歌翻译
Human modeling and relighting are two fundamental problems in computer vision and graphics, where high-quality datasets can largely facilitate related research. However, most existing human datasets only provide multi-view human images captured under the same illumination. Although valuable for modeling tasks, they are not readily used in relighting problems. To promote research in both fields, in this paper, we present UltraStage, a new 3D human dataset that contains more than 2K high-quality human assets captured under both multi-view and multi-illumination settings. Specifically, for each example, we provide 32 surrounding views illuminated with one white light and two gradient illuminations. In addition to regular multi-view images, gradient illuminations help recover detailed surface normal and spatially-varying material maps, enabling various relighting applications. Inspired by recent advances in neural representation, we further interpret each example into a neural human asset which allows novel view synthesis under arbitrary lighting conditions. We show our neural human assets can achieve extremely high capture performance and are capable of representing fine details such as facial wrinkles and cloth folds. We also validate UltraStage in single image relighting tasks, training neural networks with virtual relighted data from neural assets and demonstrating realistic rendering improvements over prior arts. UltraStage will be publicly available to the community to stimulate significant future developments in various human modeling and rendering tasks.
translated by 谷歌翻译
照片中的户外场景的照片拟实的编辑需要对图像形成过程的深刻理解和场景几何,反射和照明的准确估计。然后可以在保持场景Albedo和几何形状的同时进行照明的微妙操纵。我们呈现NERF-OSR,即,基于神经辐射场的户外场景复兴的第一种方法。与现有技术相比,我们的技术允许仅使用在不受控制的设置中拍摄的户外照片集合的场景照明和相机视点。此外,它能够直接控制通过球面谐波模型所定义的场景照明。它还包括用于阴影再现的专用网络,这对于高质量的室外场景致密至关重要。为了评估所提出的方法,我们收集了几个户外站点的新基准数据集,其中每个站点从多个视点拍摄和不同的时间。对于每个定时,360度环境映射与颜色校准Chequerboard一起捕获,以允许对实际真实的真实数据进行准确的数值评估。反对本领域的状态的比较表明,NERF-OSR能够以更高的质量和逼真的自阴影再现来实现可控的照明和视点编辑。我们的方法和数据集将在https://4dqv.mpi-inf.mpg.de/nerf-OSR/上公开可用。
translated by 谷歌翻译
由于任意多样化的物体形状,空间变化的材料和复杂的照明之间的无数相互作用,室内场景表现出显着的外观变化。由可见光和看不见的光源引起的阴影,亮点和反射需要有关反向渲染的远程相互作用的推理,该相互作用旨在恢复图像形成的组成部分,即形状,形状,材料和照明。在这项工作中,我们的直觉是,变压器体系结构学到的长期关注非常适合解决单像逆渲染中的长期挑战。我们通过对密集视力变压器Irisformer的特定实例化进行了证明,该实例是在单任务和多任务反向渲染所需的单任务和多任务推理上表现出色。具体而言,我们提出了一个变压器体系结构,以同时估算室内场景的单个图像中的深度,正态,空间变化的反照率,粗糙度和照明。我们在基准数据集上进行的广泛评估显示了上述每个任务的最新结果,从而使应用程序诸如对象插入和材料编辑之类的应用程序具有比先前的作品更大的光真实性的材料编辑。代码和数据将在https://github.com/vilab-ucsd/irisformer上公开发布。
translated by 谷歌翻译
我们解决了从由一个未知照明条件照射的物体的多视图图像(及其相机姿势)从多视图图像(和它们的相机姿势)恢复物体的形状和空间变化的空间变化的问题。这使得能够在任意环境照明下呈现对象的新颖视图和对象的材料属性的编辑。我们呼叫神经辐射分解(NERFVERTOR)的方法的关键是蒸馏神经辐射场(NERF)的体积几何形状[MILDENHALL等人。 2020]将物体表示为表面表示,然后在求解空间改变的反射率和环境照明时共同细化几何形状。具体而言,Nerfactor仅使用重新渲染丢失,简单的光滑度Provers以及从真实学中学到的数据驱动的BRDF而无任何监督的表面法线,光可视性,Albedo和双向反射率和双向反射分布函数(BRDF)的3D神经领域-world brdf测量。通过显式建模光可视性,心脏请能够将来自Albedo的阴影分离,并在任意照明条件下合成现实的软或硬阴影。 Nerfactor能够在这场具有挑战性和实际场景的挑战和捕获的捕获设置中恢复令人信服的3D模型进行令人满意的3D模型。定性和定量实验表明,在各种任务中,内容越优于基于经典和基于深度的学习状态。我们的视频,代码和数据可在peoptom.csail.mit.edu/xiuming/projects/nerfactor/上获得。
translated by 谷歌翻译
我们提出了Panohdr-nerf,这是一种新颖的管道,可随意捕获大型室内场景的合理的全HDR辐射场,而无需精心设计或复杂的捕获协议。首先,用户通过在场景中自由挥舞现成的摄像头来捕获场景的低动态范围(LDR)全向视频。然后,LDR2HDR网络将捕获的LDR帧提升到HDR,随后用于训练定制的NERF ++模型。由此产生的Panohdr-NERF管道可以从场景的任何位置估算完整的HDR全景。通过在一个新的测试数据集上进行各种真实场景的实验,并在训练过程中未见的位置捕获了地面真相HDR辐射,我们表明PanoHDR-NERF可以预测任何场景点的合理辐射。我们还表明,PanoHDR-NERF产生的HDR图像可以合成正确的照明效果,从而可以使用正确点亮的合成对象来增强室内场景。
translated by 谷歌翻译
We present a method for estimating lighting from a single perspective image of an indoor scene. Previous methods for predicting indoor illumination usually focus on either simple, parametric lighting that lack realism, or on richer representations that are difficult or even impossible to understand or modify after prediction. We propose a pipeline that estimates a parametric light that is easy to edit and allows renderings with strong shadows, alongside with a non-parametric texture with high-frequency information necessary for realistic rendering of specular objects. Once estimated, the predictions obtained with our model are interpretable and can easily be modified by an artist/user with a few mouse clicks. Quantitative and qualitative results show that our approach makes indoor lighting estimation easier to handle by a casual user, while still producing competitive results.
translated by 谷歌翻译
我们提出了一种新的方法来获取来自在线图像集合的对象表示,从具有不同摄像机,照明和背景的照片捕获任意物体的高质量几何形状和材料属性。这使得各种以各种对象渲染应用诸如新颖的综合,致密和协调的背景组合物,从疯狂的内部输入。使用多级方法延伸神经辐射场,首先推断表面几何形状并优化粗估计的初始相机参数,同时利用粗糙的前景对象掩模来提高训练效率和几何质量。我们还介绍了一种强大的正常估计技术,其消除了几何噪声的效果,同时保持了重要细节。最后,我们提取表面材料特性和环境照明,以球形谐波表示,具有处理瞬态元素的延伸部,例如,锋利的阴影。这些组件的结合导致高度模块化和有效的对象采集框架。广泛的评估和比较证明了我们在捕获高质量的几何形状和外观特性方面的方法,可用于渲染应用。
translated by 谷歌翻译
神经辐射场(NERF)最近在新型视图合成中取得了令人印象深刻的结果。但是,以前的NERF作品主要关注以对象为中心的方案。在这项工作中,我们提出了360ROAM,这是一种新颖的场景级NERF系统,可以实时合成大型室内场景的图像并支持VR漫游。我们的系统首先从多个输入$ 360^\ circ $图像构建全向神经辐射场360NERF。然后,我们逐步估算一个3D概率的占用图,该概率占用图代表了空间密度形式的场景几何形状。跳过空的空间和上采样占据的体素本质上可以使我们通过以几何学意识的方式使用360NERF加速量渲染。此外,我们使用自适应划分和扭曲策略来减少和调整辐射场,以进一步改进。从占用地图中提取的场景的平面图可以为射线采样提供指导,并促进现实的漫游体验。为了显示我们系统的功效,我们在各种场景中收集了$ 360^\ Circ $图像数据集并进行广泛的实验。基线之间的定量和定性比较说明了我们在复杂室内场景的新型视图合成中的主要表现。
translated by 谷歌翻译
We present a method that takes as input a set of images of a scene illuminated by unconstrained known lighting, and produces as output a 3D representation that can be rendered from novel viewpoints under arbitrary lighting conditions. Our method represents the scene as a continuous volumetric function parameterized as MLPs whose inputs are a 3D location and whose outputs are the following scene properties at that input location: volume density, surface normal, material parameters, distance to the first surface intersection in any direction, and visibility of the external environment in any direction. Together, these allow us to render novel views of the object under arbitrary lighting, including indirect illumination effects. The predicted visibility and surface intersection fields are critical to our model's ability to simulate direct and indirect illumination during training, because the brute-force techniques used by prior work are intractable for lighting conditions outside of controlled setups with a single light. Our method outperforms alternative approaches for recovering relightable 3D scene representations, and performs well in complex lighting settings that have posed a significant challenge to prior work.
translated by 谷歌翻译
综合照片 - 现实图像和视频是计算机图形的核心,并且是几十年的研究焦点。传统上,使用渲染算法(如光栅化或射线跟踪)生成场景的合成图像,其将几何形状和材料属性的表示为输入。统称,这些输入定义了实际场景和呈现的内容,并且被称为场景表示(其中场景由一个或多个对象组成)。示例场景表示是具有附带纹理的三角形网格(例如,由艺术家创建),点云(例如,来自深度传感器),体积网格(例如,来自CT扫描)或隐式曲面函数(例如,截短的符号距离)字段)。使用可分辨率渲染损耗的观察结果的这种场景表示的重建被称为逆图形或反向渲染。神经渲染密切相关,并将思想与经典计算机图形和机器学习中的思想相结合,以创建用于合成来自真实观察图像的图像的算法。神经渲染是朝向合成照片现实图像和视频内容的目标的跨越。近年来,我们通过数百个出版物显示了这一领域的巨大进展,这些出版物显示了将被动组件注入渲染管道的不同方式。这种最先进的神经渲染进步的报告侧重于将经典渲染原则与学习的3D场景表示结合的方法,通常现在被称为神经场景表示。这些方法的一个关键优势在于它们是通过设计的3D-一致,使诸如新颖的视点合成捕获场景的应用。除了处理静态场景的方法外,我们还涵盖了用于建模非刚性变形对象的神经场景表示...
translated by 谷歌翻译
尽管通过自学意识到,基于多层感知的方法在形状和颜色恢复方面取得了令人鼓舞的结果,但在学习深层隐式表面表示方面通常会遭受沉重的计算成本。由于渲染每个像素需要一个向前的网络推断,因此合成整个图像是非常密集的。为了应对这些挑战,我们提出了一种有效的粗到精细方法,以从本文中从多视图中恢复纹理网格。具体而言,采用可区分的泊松求解器来表示对象的形状,该求解器能够产生拓扑 - 敏捷和水密表面。为了说明深度信息,我们通过最小化渲染网格与多视图立体声预测深度之间的差异来优化形状几何形状。与形状和颜色的隐式神经表示相反,我们引入了一种基于物理的逆渲染方案,以共同估计环境照明和对象的反射率,该方案能够实时呈现高分辨率图像。重建的网格的质地是从可学习的密集纹理网格中插值的。我们已经对几个多视图立体数据集进行了广泛的实验,其有希望的结果证明了我们提出的方法的功效。该代码可在https://github.com/l1346792580123/diff上找到。
translated by 谷歌翻译
We present a method that synthesizes novel views of complex scenes by interpolating a sparse set of nearby views. The core of our method is a network architecture that includes a multilayer perceptron and a ray transformer that estimates radiance and volume density at continuous 5D locations (3D spatial locations and 2D viewing directions), drawing appearance information on the fly from multiple source views. By drawing on source views at render time, our method hearkens back to classic work on image-based rendering (IBR), and allows us to render high-resolution imagery. Unlike neural scene representation work that optimizes per-scene functions for rendering, we learn a generic view interpolation function that generalizes to novel scenes. We render images using classic volume rendering, which is fully differentiable and allows us to train using only multiview posed images as supervision. Experiments show that our method outperforms recent novel view synthesis methods that also seek to generalize to novel scenes. Further, if fine-tuned on each scene, our method is competitive with state-of-the-art single-scene neural rendering methods. 1
translated by 谷歌翻译
推断从单个图像的场景照明是计算机视觉和计算机图形中的必不可少的且挑战性的任务。通过回归代表照明参数或直接生成照明映射来估计照明。然而,这些方法通常遭受差的准确性和泛化。本文介绍了几何移动器的光(GMLight),一种采用回归网络和用于有效照明估计的生成投影仪的照明估计框架。我们根据几何光分布,光强度,环境术语和辅助深度参数化照明场景,这可以由回归网络估计。灵感来自地球移动器的距离,我们设计了一种新颖的几何动力损失,以指导光分布参数的准确回归。利用估计的光参数,生成投影机用现实的外观和高频细节合成全景照明图。广泛的实验表明,GALLIVEVES实现了准确的照明估计和卓越的保真度,在欣赏3D对象插入时。该代码可在\ href {https://github.com/fnzhan/illumination- istimation} {https://github.com/fnzhan/illumination-istimation}。
translated by 谷歌翻译