无意的行动是罕见的事件,难以精确定义,并且高度依赖于动作的时间背景。在这项工作中,我们探讨了此类行动,并试图确定视频中的观点,这些动作从故意到无意中过渡。我们提出了一个多阶段框架,该框架利用了固有的偏见,例如运动速度,运动方向和为了识别无意的行动。为了通过自我监督的训练来增强表示,我们提出了时间转变,称为时间转变,称为无意义行动固有偏见(T2IBUA)的时间转变。多阶段方法对各个帧和完整剪辑的级别进行了时间信息。这些增强的表示表现出强烈的无意行动识别任务的表现。我们对我们的框架进行了广泛的消融研究,并报告结果对最先进的结果有了显着改善。
translated by 谷歌翻译
视频自我监督的学习是一项挑战的任务,这需要模型的显着表达力量来利用丰富的空间时间知识,并从大量未标记的视频产生有效的监督信号。但是,现有方法未能提高未标记视频的时间多样性,并以明确的方式忽略精心建模的多尺度时间依赖性。为了克服这些限制,我们利用视频中的多尺度时间依赖性,并提出了一个名为时间对比图学习(TCGL)的新型视频自我监督学习框架,该框架共同模拟了片段间和片段间的时间依赖性用混合图对比学习策略学习的时间表示学习。具体地,首先引入空间 - 时间知识发现(STKD)模块以基于离散余弦变换的频域分析从视频中提取运动增强的空间时间表。为了显式模拟未标记视频的多尺度时间依赖性,我们的TCGL将关于帧和片段命令的先前知识集成到图形结构中,即片段/间隙间时间对比图(TCG)。然后,特定的对比学习模块旨在最大化不同图形视图中节点之间的协议。为了为未标记的视频生成监控信号,我们介绍了一种自适应片段订购预测(ASOP)模块,它利用视频片段之间的关系知识来学习全局上下文表示并自适应地重新校准通道明智的功能。实验结果表明我们的TCGL在大规模行动识别和视频检索基准上的最先进方法中的优势。
translated by 谷歌翻译
这项工作提出了一个名为TEG的自我监督的学习框架,探讨学习视频表示中的时间粒度。在TEG中,我们从视频中抽出一个长剪辑,以及在长夹内部的短夹。然后我们提取密集的时间嵌入品。培训目标由两部分组成:一个细粒度的时间学习目的,以最大化短夹和长剪辑中的相应时间嵌入之间的相似性,以及持续的时间学习目标,以将两个剪辑的全局嵌入在一起。我们的研究揭示了时间粒度与三个主要发现的影响。 1)不同的视频任务可能需要不同时间粒度的特征。 2)有趣的是,广泛认为需要时间感知的一些任务实际上可以通过时间持久的功能来解决。 3)TEG的灵活性对8个视频基准测试产生最先进的结果,在大多数情况下优于监督预训练。
translated by 谷歌翻译
尽管完全监督的人类骨架序列建模成功,但使用自我监督的预训练进行骨架序列表示学习一直是一个活跃的领域,因为很难在大规模上获取特定于任务的骨骼注释。最近的研究重点是使用对比学习学习视频级别的时间和歧视性信息,但忽略了人类骨骼的层次空间时间。与视频级别的这种表面监督不同,我们提出了一种自我监督的分层预训练方案,该方案纳入了基于层次变压器的骨骼骨骼序列编码器(HI-TRS),以明确捕获空间,短期和长期和长期框架,剪辑和视频级别的时间依赖性分别。为了通过HI-TR评估提出的自我监督预训练方案,我们进行了广泛的实验,涵盖了三个基于骨架的下游任务,包括动作识别,动作检测和运动预测。根据监督和半监督评估协议,我们的方法实现了最新的性能。此外,我们证明了我们的模型在训练阶段中学到的先验知识具有强大的下游任务的转移能力。
translated by 谷歌翻译
区分动作是按预期执行的,还是预期的动作失败是人类不仅具有的重要技能,而且对于在人类环境中运行的智能系统也很重要。但是,由于缺乏带注释的数据,认识到一项行动是无意的还是预期的,是否会失败。尽管可以在互联网中发现无意或失败动作的视频,但高注释成本是学习网络的主要瓶颈。因此,在这项工作中,我们研究了对无意采取行动预测的自学代表学习的问题。虽然先前的作品学习基于本地时间社区的表示形式,但我们表明需要视频的全局上下文来学习三个下游任务的良好表示:无意的动作分类,本地化和预期。在补充材料中,我们表明学习的表示形式也可用于检测视频中的异常情况。
translated by 谷歌翻译
现代自我监督的学习算法通常强制执行跨视图实例的表示的持久性。虽然非常有效地学习整体图像和视频表示,但这种方法成为在视频中学习时空时间细粒度的特征的子最优,其中场景和情况通过空间和时间演变。在本文中,我们介绍了上下文化的时空对比学习(Const-CL)框架,以利用自我监督有效学习时空时间细粒度的表示。我们首先设计一种基于区域的自我监督的借口任务,该任务要求模型从一个视图中学习将实例表示转换为上下文特征的另一个视图。此外,我们介绍了一个简单的网络设计,有效地调和了整体和本地表示的同时学习过程。我们评估我们对各种下游任务和CONST-CL的学习表现,实现了四个数据集的最先进结果。对于时空行动本地化,Const-CL可以使用AVA-Kinetics验证集的检测到框实现39.4%的地图和30.5%地图。对于对象跟踪,Const-CL在OTB2015上实现了78.1%的精度和55.2%的成功分数。此外,Const-CL分别在视频动作识别数据集,UCF101和HMDB51上实现了94.8%和71.9%的前1个微调精度。我们计划向公众发布我们的代码和模型。
translated by 谷歌翻译
在本文中,我们向使用未标记的视频数据提出了用于视频变压器的自我监督培训。从给定的视频,我们创建了不同的空间尺寸和帧速率的本地和全球时空视图。我们的自我监督目标旨在匹配这些不同视图的特征,代表相同的视频,以不变于动作的时空变化。据我们所知,所提出的方法是第一个缓解对自我监督视频变压器(SVT)中的负样本或专用内存库的依赖。此外,由于变压器模型的灵活性,SVT使用动态调整的位置编码在单个架构内支持慢速视频处理,并支持沿着时空尺寸的长期关系建模。我们的方法在四个动作识别基准(动力学-400,UCF-101,HMDB-51和SSV2)上执行良好,并通过小批量尺寸更快地收敛。代码:https://git.io/j1juj.
translated by 谷歌翻译
We propose a new self-supervised CNN pre-training technique based on a novel auxiliary task called odd-oneout learning. In this task, the machine is asked to identify the unrelated or odd element from a set of otherwise related elements. We apply this technique to self-supervised video representation learning where we sample subsequences from videos and ask the network to learn to predict the odd video subsequence. The odd video subsequence is sampled such that it has wrong temporal order of frames while the even ones have the correct temporal order. Therefore, to generate a odd-one-out question no manual annotation is required. Our learning machine is implemented as multi-stream convolutional neural network, which is learned end-to-end. Using odd-one-out networks, we learn temporal representations for videos that generalizes to other related tasks such as action recognition.On action classification, our method obtains 60.3% on the UCF101 dataset using only UCF101 data for training which is approximately 10% better than current stateof-the-art self-supervised learning methods. Similarly, on HMDB51 dataset we outperform self-supervised state-ofthe art methods by 12.7% on action classification task.
translated by 谷歌翻译
Previous work on action representation learning focused on global representations for short video clips. In contrast, many practical applications, such as video alignment, strongly demand learning the intensive representation of long videos. In this paper, we introduce a new framework of contrastive action representation learning (CARL) to learn frame-wise action representation in a self-supervised or weakly-supervised manner, especially for long videos. Specifically, we introduce a simple but effective video encoder that considers both spatial and temporal context by combining convolution and transformer. Inspired by the recent massive progress in self-supervised learning, we propose a new sequence contrast loss (SCL) applied to two related views obtained by expanding a series of spatio-temporal data in two versions. One is the self-supervised version that optimizes embedding space by minimizing KL-divergence between sequence similarity of two augmented views and prior Gaussian distribution of timestamp distance. The other is the weakly-supervised version that builds more sample pairs among videos using video-level labels by dynamic time wrapping (DTW). Experiments on FineGym, PennAction, and Pouring datasets show that our method outperforms previous state-of-the-art by a large margin for downstream fine-grained action classification and even faster inference. Surprisingly, although without training on paired videos like in previous works, our self-supervised version also shows outstanding performance in video alignment and fine-grained frame retrieval tasks.
translated by 谷歌翻译
We wish to automatically predict the "speediness" of moving objects in videos-whether they move faster, at, or slower than their "natural" speed. The core component in our approach is SpeedNet-a novel deep network trained to detect if a video is playing at normal rate, or if it is sped up. SpeedNet is trained on a large corpus of natural videos in a self-supervised manner, without requiring any manual annotations. We show how this single, binary classification network can be used to detect arbitrary rates of speediness of objects. We demonstrate prediction results by Speed-Net on a wide range of videos containing complex natural motions, and examine the visual cues it utilizes for making those predictions. Importantly, we show that through predicting the speed of videos, the model learns a powerful and meaningful space-time representation that goes beyond simple motion cues. We demonstrate how those learned features can boost the performance of self-supervised action recognition, and can be used for video retrieval. Furthermore, we also apply SpeedNet for generating time-varying, adaptive video speedups, which can allow viewers to watch videos faster, but with less of the jittery, unnatural motions typical to videos that are sped up uniformly.
translated by 谷歌翻译
Transformer models have shown great success handling long-range interactions, making them a promising tool for modeling video. However they lack inductive biases and scale quadratically with input length. These limitations are further exacerbated when dealing with the high dimensionality introduced with the temporal dimension. While there are surveys analyzing the advances of Transformers for vision, none focus on an in-depth analysis of video-specific designs. In this survey we analyze main contributions and trends of works leveraging Transformers to model video. Specifically, we delve into how videos are handled as input-level first. Then, we study the architectural changes made to deal with video more efficiently, reduce redundancy, re-introduce useful inductive biases, and capture long-term temporal dynamics. In addition we provide an overview of different training regimes and explore effective self-supervised learning strategies for video. Finally, we conduct a performance comparison on the most common benchmark for Video Transformers (i.e., action classification), finding them to outperform 3D ConvNets even with less computational complexity.
translated by 谷歌翻译
通过自学学习的视觉表示是一项极具挑战性的任务,因为网络需要在没有监督提供的主动指导的情况下筛选出相关模式。这是通过大量数据增强,大规模数据集和过量量的计算来实现的。视频自我监督学习(SSL)面临着额外的挑战:视频数据集通常不如图像数据集那么大,计算是一个数量级,并且优化器所必须通过的伪造模式数量乘以几倍。因此,直接从视频数据中学习自我监督的表示可能会导致次优性能。为了解决这个问题,我们建议在视频表示学习框架中利用一个以自我或语言监督为基础的强大模型,并在不依赖视频标记的数据的情况下学习强大的空间和时间信息。为此,我们修改了典型的基于视频的SSL设计和目标,以鼓励视频编码器\ textit {subsume}基于图像模型的语义内容,该模型在通用域上训练。所提出的算法被证明可以更有效地学习(即在较小的时期和较小的批次中),并在单模式SSL方法中对标准下游任务进行了新的最新性能。
translated by 谷歌翻译
我们介绍了在视频中发现时间精确,细粒度事件的任务(检测到时间事件的精确时刻)。精确的斑点需要模型在全球范围内对全日制动作规模进行推理,并在本地识别微妙的框架外观和运动差异,以识别这些动作过程中事件的识别。令人惊讶的是,我们发现,最高的绩效解决方案可用于先前的视频理解任务,例如操作检测和细分,不能同时满足这两个要求。作为响应,我们提出了E2E点,这是一种紧凑的端到端模型,在精确的发现任务上表现良好,可以在单个GPU上快速培训。我们证明,E2E点的表现明显优于最近根据视频动作检测,细分和将文献发现到精确的发现任务的基线。最后,我们为几个细粒度的运动动作数据集贡献了新的注释和分裂,以使这些数据集适用于未来的精确发现工作。
translated by 谷歌翻译
最近的自我监督视频表示学习方法通​​过探索视频的基本属性,例如探讨了视频的基本属性。速度,时间顺序等。这项工作利用了一个必不可少的视频,\ Texit {视频连续性}的必要性,以获取自我监督表示学习的监督信号。具体而言,我们制定了三个新的连续性相关的借口任务,即连续性理由,不连续的本地化和缺失部分近似,该近似地监督用于视频表示学习的共享骨干。这种自我监督方法被称为连续性感知网络(CPNet),解决了三个任务,并鼓励骨干网络学习本地和长距离的运动和情境表示。它在多个下游任务中优于现有技术,例如动作识别,视频检索和动作定位。另外,视频连续性可以与其他粗粒度视频属性互补,用于表示学习的其他粗粒视频属性,并将所提出的借口任务集成到现有技术中,可以产生很大的性能增益。
translated by 谷歌翻译
We present a self-supervised Contrastive Video Representation Learning (CVRL) method to learn spatiotemporal visual representations from unlabeled videos. Our representations are learned using a contrastive loss, where two augmented clips from the same short video are pulled together in the embedding space, while clips from different videos are pushed away. We study what makes for good data augmentations for video self-supervised learning and find that both spatial and temporal information are crucial. We carefully design data augmentations involving spatial and temporal cues. Concretely, we propose a temporally consistent spatial augmentation method to impose strong spatial augmentations on each frame of the video while maintaining the temporal consistency across frames. We also propose a sampling-based temporal augmentation method to avoid overly enforcing invariance on clips that are distant in time. On Kinetics-600, a linear classifier trained on the representations learned by CVRL achieves 70.4% top-1 accuracy with a 3D-ResNet-50 (R3D-50) backbone, outperforming ImageNet supervised pre-training by 15.7% and SimCLR unsupervised pre-training by 18.8% using the same inflated R3D-50. The performance of CVRL can be further improved to 72.9% with a larger R3D-152 (2× filters) backbone, significantly closing the gap between unsupervised and supervised video representation learning. Our code and models will be available at https://github.com/tensorflow/models/tree/master/official/.
translated by 谷歌翻译
We introduce LaViLa, a new approach to learning video-language representations by leveraging Large Language Models (LLMs). We repurpose pre-trained LLMs to be conditioned on visual input, and finetune them to create automatic video narrators. Our auto-generated narrations offer a number of advantages, including dense coverage of long videos, better temporal synchronization of the visual information and text, and much higher diversity of text. The video-text embedding learned contrastively with these additional auto-generated narrations outperforms the previous state-of-the-art on multiple first-person and third-person video tasks, both in zero-shot and finetuned setups. Most notably, LaViLa obtains an absolute gain of 10.1% on EGTEA classification and 5.9% Epic-Kitchens-100 multi-instance retrieval benchmarks. Furthermore, LaViLa trained with only half the narrations from the Ego4D dataset outperforms baseline models trained on the full set, and shows positive scaling behavior on increasing pre-training data and model size.
translated by 谷歌翻译
我们提出了块茎:一种简单的时空视频动作检测解决方案。与依赖于离线演员检测器或手工设计的演员位置假设的现有方法不同,我们建议通过同时执行动作定位和识别从单个表示来直接检测视频中的动作微管。块茎学习一组管芯查询,并利用微调模块来模拟视频剪辑的动态时空性质,其有效地加强了与在时空空间中的演员位置假设相比的模型容量。对于包含过渡状态或场景变更的视频,我们提出了一种上下文意识的分类头来利用短期和长期上下文来加强行动分类,以及用于检测精确的时间动作程度的动作开关回归头。块茎直接产生具有可变长度的动作管,甚至对长视频剪辑保持良好的结果。块茎在常用的动作检测数据集AVA,UCF101-24和JHMDB51-21上优于先前的最先进。
translated by 谷歌翻译
我们呈现了基于纯变压器的视频分类模型,在图像分类中最近的近期成功进行了借鉴。我们的模型从输入视频中提取了时空令牌,然后由一系列变压器层编码。为了处理视频中遇到的令牌的长序列,我们提出了我们模型的几种有效的变体,它们将输入的空间和时间维构建。虽然已知基于变换器的模型只有在可用的大型训练数据集时才有效,但我们展示了我们如何在训练期间有效地规范模型,并利用预先训练的图像模型能够在相对小的数据集上训练。我们进行彻底的消融研究,并在包括动力学400和600,史诗厨房,东西的多个视频分类基准上实现最先进的结果,其中 - 基于深度3D卷积网络的现有方法表现出优先的方法。为了促进进一步的研究,我们在https://github.com/google-research/scenic/tree/main/scenic/projects/vivit发布代码
translated by 谷歌翻译
Temporal action segmentation tags action labels for every frame in an input untrimmed video containing multiple actions in a sequence. For the task of temporal action segmentation, we propose an encoder-decoder-style architecture named C2F-TCN featuring a "coarse-to-fine" ensemble of decoder outputs. The C2F-TCN framework is enhanced with a novel model agnostic temporal feature augmentation strategy formed by the computationally inexpensive strategy of the stochastic max-pooling of segments. It produces more accurate and well-calibrated supervised results on three benchmark action segmentation datasets. We show that the architecture is flexible for both supervised and representation learning. In line with this, we present a novel unsupervised way to learn frame-wise representation from C2F-TCN. Our unsupervised learning approach hinges on the clustering capabilities of the input features and the formation of multi-resolution features from the decoder's implicit structure. Further, we provide the first semi-supervised temporal action segmentation results by merging representation learning with conventional supervised learning. Our semi-supervised learning scheme, called ``Iterative-Contrastive-Classify (ICC)'', progressively improves in performance with more labeled data. The ICC semi-supervised learning in C2F-TCN, with 40% labeled videos, performs similar to fully supervised counterparts.
translated by 谷歌翻译
尽管对视频表示学习的自我监督预先预测方法的突出成功,但在未标记的预测数据集很小或源任务(预先训练)中的未标记数据和目标任务中标记的数据(Fineetuning)之间的域差异。为了缓解这些问题,我们提出了一种新的方法来通过基于知识相似性蒸馏,Auxskd的辅助预押阶段补充自我监督预测,以便更好地推广,具有明显较少量的视频数据,例如,动力学-100而不是动力学-400。我们的方法通过捕获未标记的视频数据的段之间的相似信息,将其知识迭代地将其知识蒸发到学生模型。然后,学生模型通过利用此先验知识来解决借口任务。我们还介绍了一种新颖的借口任务,视频段速度预测或VSPP,这需要我们的模型来预测输入视频的随机选择段的播放速度,以提供更可靠的自我监督的表示。我们的实验结果表明,在K100上预先训练时,UCF101和HMDB51数据集的最先进结果卓越。此外,我们表明我们的辅助辅助辅助持久性辅助阶段作为最近的艺术的自我监督方法(例如VideOpace和Rspnet),可以在UCF101和HMDB51上提高结果。我们的代码即将发布。
translated by 谷歌翻译