为了响应现有的对象检测算法,应用于复杂的火灾方案,检测准确性较差,速度缓慢和困难的部署。本文提出了轻巧的火灾检测算法,可实现速度和准确性的平衡。首先,骨干网络的最后一层被SEPVIT块取代,以增强骨干网络与全局信息的联系;其次,轻型BIFPN颈网旨在减轻模型,同时改善特征提取。第三,全球注意机制(GAM)融合到网络中,以使模型更加专注于全球维度特征。最后,我们使用Mish激活函数和SIOU损失来提高收敛速度并同时提高准确性。实验结果表明,与原始算法相比,Light-Yolov5将MAP提高3.3%,将参数数量减少27.1%,将计算减少19.1%,达到91.1的FPS。即使与最新的Yolov7微型相比,Light-Yolov5的地图也高6.8%,这显示了该算法的有效性。
translated by 谷歌翻译
对象检测是计算机视觉中的重要下游任务。对于车载边缘计算平台,很难实现实时检测要求。而且,由大量可分开的卷积层建立的轻巧模型无法达到足够的精度。我们引入了一种新的轻质卷积技术GSCONV,以减轻模型,但保持准确性。 GSCONV在模型的准确性和速度之间取得了极好的权衡。而且,我们提供了一个设计范式,即纤细的颈部,以实现探测器的更高计算成本效益。在二十多组比较实验中,我们的方法的有效性得到了强有力的证明。特别是,通过我们的方法改善的检测器获得了最先进的结果(例如,与原件相比,在Tesla T4 GPU上以〜100fps的速度为70.9%MAP0.5。代码可从https://github.com/alanli1997/slim-neck-by-gsconv获得。
translated by 谷歌翻译
2019年冠状病毒为全球社会稳定和公共卫生带来了严重的挑战。遏制流行病的一种有效方法是要求人们在公共场所戴口罩,并通过使用合适的自动探测器来监视戴口罩状态。但是,现有的基于深度学习的模型努力同时达到高精度和实时性能的要求。为了解决这个问题,我们提出了基于Yolov5的改进的轻质面膜探测器,该检测器可以实现精确和速度的良好平衡。首先,提出了将ShuffleNetV2网络与协调注意机制相结合的新型骨干轮弹工具作为骨干。之后,将有效的路径攻击网络BIFPN作为特征融合颈应用。此外,在模型训练阶段,定位损失被α-CIOU取代,以获得更高质量的锚。还利用了一些有价值的策略,例如数据增强,自适应图像缩放和锚点群集操作。 Aizoo面膜数据集的实验结果显示了所提出模型的优越性。与原始的Yolov5相比,提出的模型将推理速度提高28.3%,同时仍将精度提高0.58%。与其他七个现有型号相比,它的最佳平均平均精度为95.2%,比基线高4.4%。
translated by 谷歌翻译
交通标志检测是无人驾驶系统的具有挑战性的任务,特别是对于检测多尺度目标和检测的实时问题。在交通标志检测过程中,目标的比例大大变化,这将对检测精度产生一定的影响。特征金字塔广泛用于解决这个问题,但它可能会破坏不同的交通标志尺度的功能一致性。此外,在实际应用中,常用方法难以提高多尺度交通标志的检测精度,同时确保实时检测。在本文中,我们提出了一种改进的特征金字塔模型,名为AF-FPN,它利用自适应注意模块(AAM)和特征增强模块(FEM)来减少特征映射生成过程中的信息损失,并提高表示能力特征金字塔。我们用AF-FPN替换了YOLOV5中的原始特征金字塔网络,这在确保实时检测的前提下提高了YOLOV5网络的多尺度目标的检测性能。此外,提出了一种新的自动学习数据增强方法来丰富数据集,提高模型的稳健性,使其更适合实际情况。关于清华腾讯100K(TT100K)数据集的广泛实验结果证明了与多种最先进的方法相比,所提出的方法的有效性和优越性。
translated by 谷歌翻译
In recent years, object detection has achieved a very large performance improvement, but the detection result of small objects is still not very satisfactory. This work proposes a strategy based on feature fusion and dilated convolution that employs dilated convolution to broaden the receptive field of feature maps at various scales in order to address this issue. On the one hand, it can improve the detection accuracy of larger objects. On the other hand, it provides more contextual information for small objects, which is beneficial to improving the detection accuracy of small objects. The shallow semantic information of small objects is obtained by filtering out the noise in the feature map, and the feature information of more small objects is preserved by using multi-scale fusion feature module and attention mechanism. The fusion of these shallow feature information and deep semantic information can generate richer feature maps for small object detection. Experiments show that this method can have higher accuracy than the traditional YOLOv3 network in the detection of small objects and occluded objects. In addition, we achieve 32.8\% Mean Average Precision on the detection of small objects on MS COCO2017 test set. For 640*640 input, this method has 88.76\% mAP on the PASCAL VOC2012 dataset.
translated by 谷歌翻译
更好的准确性和效率权衡在对象检测中是一个具有挑战性的问题。在这项工作中,我们致力于研究对象检测的关键优化和神经网络架构选择,以提高准确性和效率。我们调查了无锚策略对轻质对象检测模型的适用性。我们增强了骨干结构并设计了颈部的轻质结构,从而提高了网络的特征提取能力。我们改善标签分配策略和损失功能,使培训更稳定和高效。通过这些优化,我们创建了一个名为PP-Picodet的新的实时对象探测器系列,这在移动设备的对象检测上实现了卓越的性能。与其他流行型号相比,我们的模型在准确性和延迟之间实现了更好的权衡。 Picodet-s只有0.99m的参数达到30.6%的地图,它是地图的绝对4.8%,同时与yolox-nano相比将移动CPU推理延迟减少55%,并且与Nanodet相比,MAP的绝对改善了7.1%。当输入大小为320时,它在移动臂CPU上达到123个FPS(使用桨Lite)。Picodet-L只有3.3M参数,达到40.9%的地图,这是地图的绝对3.7%,比yolov5s更快44% 。如图1所示,我们的模型远远优于轻量级对象检测的最先进的结果。代码和预先训练的型号可在https://github.com/paddlepaddle/paddledentions提供。
translated by 谷歌翻译
无人驾驶飞机(UAV)的实时对象检测是一个具有挑战性的问题,因为Edge GPU设备作为物联网(IoT)节点的计算资源有限。为了解决这个问题,在本文中,我们提出了一种基于Yolox模型的新型轻型深度学习体系结构,用于Edge GPU上的实时对象检测。首先,我们设计了一个有效且轻巧的PixSF头,以更换Yolox的原始头部以更好地检测小物体,可以将其进一步嵌入深度可分离的卷积(DS Conv)中,以达到更轻的头。然后,开发为减少网络参数的颈层中的较小结构,这是精度和速度之间的权衡。此外,我们将注意模块嵌入头层中,以改善预测头的特征提取效果。同时,我们还改进了标签分配策略和损失功能,以减轻UAV数据集的类别不平衡和盒子优化问题。最后,提出了辅助头进行在线蒸馏,以提高PIXSF Head中嵌入位置嵌入和特征提取的能力。在NVIDIA Jetson NX和Jetson Nano GPU嵌入平台上,我们的轻质模型的性能得到了实验验证。扩展的实验表明,与目前的模型相比,Fasterx模型在Visdrone2021数据集中实现了更好的折衷和延迟之间的折衷。
translated by 谷歌翻译
近年来,基于深度学习的面部检测算法取得了长足的进步。这些算法通常可以分为两类,即诸如更快的R-CNN和像Yolo这样的单阶段检测器之类的两个阶段检测器。由于准确性和速度之间的平衡更好,因此在许多应用中广泛使用了一阶段探测器。在本文中,我们提出了一个基于一阶段检测器Yolov5的实时面部检测器,名为Yolo-Facev2。我们设计一个称为RFE的接收场增强模块,以增强小面的接受场,并使用NWD损失来弥补IOU对微小物体的位置偏差的敏感性。对于面部阻塞,我们提出了一个名为Seam的注意模块,并引入了排斥损失以解决它。此外,我们使用重量函数幻灯片来解决简单和硬样品之间的不平衡,并使用有效的接收场的信息来设计锚。宽面数据集上的实验结果表明,在所有简单,中和硬子集中都可以找到我们的面部检测器及其变体的表现及其变体。源代码https://github.com/krasjet-yu/yolo-facev2
translated by 谷歌翻译
Passive millimeter-wave (PMMW) is a significant potential technique for human security screening. Several popular object detection networks have been used for PMMW images. However, restricted by the low resolution and high noise of PMMW images, PMMW hidden object detection based on deep learning usually suffers from low accuracy and low classification confidence. To tackle the above problems, this paper proposes a Task-Aligned Detection Transformer network, named PMMW-DETR. In the first stage, a Denoising Coarse-to-Fine Transformer (DCFT) backbone is designed to extract long- and short-range features in the different scales. In the second stage, we propose the Query Selection module to introduce learned spatial features into the network as prior knowledge, which enhances the semantic perception capability of the network. In the third stage, aiming to improve the classification performance, we perform a Task-Aligned Dual-Head block to decouple the classification and regression tasks. Based on our self-developed PMMW security screening dataset, experimental results including comparison with State-Of-The-Art (SOTA) methods and ablation study demonstrate that the PMMW-DETR obtains higher accuracy and classification confidence than previous works, and exhibits robustness to the PMMW images of low quality.
translated by 谷歌翻译
最近已经设计了一些轻巧的卷积神经网络(CNN)模型,用于遥感对象检测(RSOD)。但是,他们中的大多数只是用可分离的卷积代替了香草卷积,这可能是由于很多精确损失而无法有效的,并且可能无法检测到方向的边界框(OBB)。同样,现有的OBB检测方法很难准确限制CNN预测的对象的形状。在本文中,我们提出了一个有效的面向轻质对象检测器(LO-DET)。具体而言,通道分离聚集(CSA)结构旨在简化可分开的卷积的复杂性,并开发了动态的接收场(DRF)机制,以通过自定义卷积内核及其感知范围来保持高精度,以保持高精度。网络复杂性。 CSA-DRF组件在保持高精度的同时优化了效率。然后,对角支撑约束头(DSC-Head)组件旨在检测OBB,并更准确,更稳定地限制其形状。公共数据集上的广泛实验表明,即使在嵌入式设备上,拟议的LO-DET也可以非常快地运行,具有检测方向对象的竞争精度。
translated by 谷歌翻译
人行道表面数据的获取和评估在路面条件评估中起着至关重要的作用。在本文中,提出了一个称为RHA-NET的自动路面裂纹分割的有效端到端网络,以提高路面裂纹分割精度。 RHA-NET是通过将残留块(重阻)和混合注意块集成到编码器架构结构中来构建的。这些重组用于提高RHA-NET提取高级抽象特征的能力。混合注意块旨在融合低级功能和高级功能,以帮助模型专注于正确的频道和裂纹区域,从而提高RHA-NET的功能表现能力。构建并用于训练和评估所提出的模型的图像数据集,其中包含由自设计的移动机器人收集的789个路面裂纹图像。与其他最先进的网络相比,所提出的模型在全面的消融研究中验证了添加残留块和混合注意机制的功能。此外,通过引入深度可分离卷积生成的模型的轻加权版本可以更好地实现性能和更快的处理速度,而U-NET参数数量的1/30。开发的系统可以在嵌入式设备Jetson TX2(25 fps)上实时划分路面裂纹。实时实验拍摄的视频将在https://youtu.be/3xiogk0fig4上发布。
translated by 谷歌翻译
作为自然宝藏,海洋拥有丰富的资源。但是对于海洋生物的可持续发展至关重要的珊瑚礁由于存在COT和其他生物而面临巨大的危​​机。通过体力劳动来保护社会的效率有限且效率低下。海洋环境的不可预测的本质也使手动操作冒险。在水下操作中使用机器人已成为一种趋势。但是,水下图像采集具有弱光,低分辨率和许多干扰等缺陷,而现有的目标检测算法无效。基于此,我们提出了一种基于注意的Yolov5(称为UTD-YOLOV5)的水下目标检测算法。它可以快速有效地检测COT,这又为复杂的水下操作提供了前提。我们在多个阶段调整了Yolov5的原始网络体系结构,包括:用两阶段的级联CSP(CSP2)代替原始骨干;引入视觉通道注意机构模块SE;设计随机锚点相似性计算方法等。这些操作使UTD-Yolov5能够更灵活地检测并更准确地捕获功能。为了提高网络的效率,我们还提出了优化方法,例如WBF和迭代改进机制。本文根据CSIRO数据集进行了许多实验[1]。结果表明,我们的UTD-Yolov5的平均准确性达到78.54%,与基线相比,这是一个很大的提高。
translated by 谷歌翻译
现代物体检测网络追求一般物体检测数据集的更高精度,同时计算负担也随着精度的提高而越来越多。然而,推理时间和精度对于需要是实时的对象检测系统至关重要。没有额外的计算成本,有必要研究精度改进。在这项工作中,提出了两种模块以提高零成本的检测精度,这是一般对象检测网络的FPN和检测头改进。我们采用规模注意机制,以有效地保险熔断多级功能映射,参数较少,称为SA-FPN模块。考虑到分类头和回归头的相关性,我们使用顺序头取代广泛使用的并联头部,称为SEQ-Head模块。为了评估有效性,我们将这两个模块应用于一些现代最先进的对象检测网络,包括基于锚和无锚。 Coco DataSet上的实验结果表明,具有两个模块的网络可以将原始网络超越1.1 AP和0.8 AP,分别为锚的锚和无锚网络的零成本。代码将在https://git.io/jtfgl提供。
translated by 谷歌翻译
X射线图像在制造业的质量保证中起着重要作用,因为它可以反映焊接区域的内部条件。然而,不同缺陷类型的形状和规模大大变化,这使得模型检测焊接缺陷的挑战性。在本文中,我们提出了一种基于卷积神经网络的焊接缺陷检测方法,即打火机和更快的YOLO(LF-YOLO)。具体地,增强的多尺度特征(RMF)模块旨在实现基于参数和无参数的多尺度信息提取操作。 RMF使得提取的特征映射能够代表更丰富的信息,该信息是通过卓越的层级融合结构实现的。为了提高检测网络的性能,我们提出了一个有效的特征提取(EFE)模块。 EFE处理具有极低消耗量的输入数据,并提高了实际行业中整个网络的实用性。实验结果表明,我们的焊接缺陷检测网络在性能和消耗之间实现了令人满意的平衡,达到92.9平均平均精度MAP50,每秒61.5帧(FPS)。为了进一步证明我们方法的能力,我们在公共数据集MS Coco上测试它,结果表明我们的LF-YOLO具有出色的多功能性检测性能。代码可在https://github.com/lmomoy/lf-yolo上获得。
translated by 谷歌翻译
在这项研究中,提出了一种集成检测模型,即Swin-Transformer-Yolov5或Swin-T-Yolov5,用于实时葡萄酒葡萄束检测,以继承Yolov5和Swin-Transformer的优势。该研究是针对2019年7月至9月的两种不同的霞多丽(始终白色或白色混合浆果皮肤)和梅洛(白色或白色混合浆果皮肤)的研究。从2019年7月至9月。 -yolov5,其性能与几个常用/竞争性对象探测器进行了比较,包括更快的R-CNN,Yolov3,Yolov4和Yolov5。在不同的测试条件下评估了所有模型,包括两个不同的天气条件(阳光和多云),两个不同的浆果成熟度(不成熟和成熟)以及三个不同的阳光方向/强度(早晨,中午和下午)进行全面比较。此外,Swin-t-Yolov5的预测葡萄束数量与地面真实值进行了比较,包括在注释过程中的现场手动计数和手动标记。结果表明,拟议的SWIN-T-YOLOV5的表现优于所有其他研究的葡萄束检测模型,当天气多云时,最高平均平均精度(MAP)和0.89的F1得分的97%。该地图分别比更快的R-CNN,Yolov3,Yolov4和Yolov5大约大约44%,18%,14%和4%。当检测到未成熟的浆果时,Swin-T-Yolov5获得了最低的地图(90%)和F1分数(0.82),其中该地图大约比相同的浆果大约40%,5%,3%和1%。此外,在将预测与地面真相进行比较时,Swin-T-Yolov5在Chardonnay品种上的表现更好,最多可达到R2的0.91和2.36根均方根误差(RMSE)。但是,它在Merlot品种上的表现不佳,仅达到R2和3.30的RMSE的0.70。
translated by 谷歌翻译
面部检测是为了在图像中搜索面部的所有可能区域,并且如果有任何情况,则定位面部。包括面部识别,面部表情识别,面部跟踪和头部姿势估计的许多应用假设面部的位置和尺寸在图像中是已知的。近几十年来,研究人员从Viola-Jones脸上检测器创造了许多典型和有效的面部探测器到当前的基于CNN的CNN。然而,随着图像和视频的巨大增加,具有面部刻度的变化,外观,表达,遮挡和姿势,传统的面部探测器被挑战来检测野外面孔的各种“脸部。深度学习技术的出现带来了非凡的检测突破,以及计算的价格相当大的价格。本文介绍了代表性的深度学习的方法,并在准确性和效率方面提出了深度和全面的分析。我们进一步比较并讨论了流行的并挑战数据集及其评估指标。进行了几种成功的基于深度学习的面部探测器的全面比较,以使用两个度量来揭示其效率:拖鞋和延迟。本文可以指导为不同应用选择合适的面部探测器,也可以开发更高效和准确的探测器。
translated by 谷歌翻译
基于无人机(UAV)基于无人机的视觉对象跟踪已实现了广泛的应用,并且由于其多功能性和有效性而引起了智能运输系统领域的越来越多的关注。作为深度学习革命性趋势的新兴力量,暹罗网络在基于无人机的对象跟踪中闪耀,其准确性,稳健性和速度有希望的平衡。由于开发了嵌入式处理器和深度神经网络的逐步优化,暹罗跟踪器获得了广泛的研究并实现了与无人机的初步组合。但是,由于无人机在板载计算资源和复杂的现实情况下,暹罗网络的空中跟踪仍然在许多方面都面临严重的障碍。为了进一步探索基于无人机的跟踪中暹罗网络的部署,这项工作对前沿暹罗跟踪器进行了全面的审查,以及使用典型的无人机板载处理器进行评估的详尽无人用分析。然后,进行板载测试以验证代表性暹罗跟踪器在现实世界无人机部署中的可行性和功效。此外,为了更好地促进跟踪社区的发展,这项工作分析了现有的暹罗跟踪器的局限性,并进行了以低弹片评估表示的其他实验。最后,深入讨论了基于无人机的智能运输系统的暹罗跟踪的前景。领先的暹罗跟踪器的统一框架,即代码库及其实验评估的结果,请访问https://github.com/vision4robotics/siamesetracking4uav。
translated by 谷歌翻译
在过去的几年中,对象检测问题解决方案已经大大发展。在存在硬件限制的情况下,需要更轻的模型,以及对移动设备量身定制的模型的需求。在本文中,我们将评估创建解决这些问题的算法时使用的方法。本文的主要目标是提高最先进算法的准确性,同时保持速度和实时效率。一级对象检测中最重要的问题与小物体有关和本地化不准确。作为解决方案,我们创建了一个新网络,名称为MobiledenSeNet适合嵌入式系统。我们还开发了一种用于移动设备的轻颈FCPNLITE,可以帮助检测小物体。我们的研究表明,很少有论文引用嵌入式系统中的颈部。我们网络与其他网络的区别是我们使用串联功能。网络头部的一个小而显着的变化使准确性放大,而没有增加速度或限制参数。简而言之,我们对具有挑战性的可可和Pascal VOC数据集的关注分别为24.8和76.8,分别为百分比,这是迄今为止其他最先进系统所记录的率。我们的网络能够提高准确性,同时保持移动设备上的实时效率。我们将像素3(Snapdragon 845)上的操作速度计算为22.8 fps。该研究的源代码可在https://github.com/hajizadeh/mobiledensenet上获得。
translated by 谷歌翻译
Object detection, one of the three main tasks of computer vision, has been used in various applications. The main process is to use deep neural networks to extract the features of an image and then use the features to identify the class and location of an object. Therefore, the main direction to improve the accuracy of object detection tasks is to improve the neural network to extract features better. In this paper, I propose a convolutional module with a transformer[1], which aims to improve the recognition accuracy of the model by fusing the detailed features extracted by CNN[2] with the global features extracted by a transformer and significantly reduce the computational effort of the transformer module by deflating the feature mAP. The main execution steps are convolutional downsampling to reduce the feature map size, then self-attention calculation and upsampling, and finally concatenation with the initial input. In the experimental part, after splicing the block to the end of YOLOv5n[3] and training 300 epochs on the coco dataset, the mAP improved by 1.7% compared with the previous YOLOv5n, and the mAP curve did not show any saturation phenomenon, so there is still potential for improvement. After 100 rounds of training on the Pascal VOC dataset, the accuracy of the results reached 81%, which is 4.6 better than the faster RCNN[4] using resnet101[5] as the backbone, but the number of parameters is less than one-twentieth of it.
translated by 谷歌翻译
工业X射线分析在需要保证某些零件的结构完整性的航空航天,汽车或核行业中很常见。但是,射线照相图像的解释有时很困难,可能导致两名专家在缺陷分类上不同意。本文介绍的自动缺陷识别(ADR)系统将减少分析时间,还将有助于减少对缺陷的主观解释,同时提高人类检查员的可靠性。我们的卷积神经网络(CNN)模型达到94.2 \%准确性(MAP@iou = 50 \%),当应用于汽车铝铸件数据集(GDXRAR)时,它被认为与预期的人类性能相似,超过了当前状态该数据集的艺术。在工业环境上,其推理时间少于每个DICOM图像,因此可以安装在生产设施上,不会影响交付时间。此外,还进行了对主要高参数的消融研究,以优化从75 \%映射的初始基线结果最高94.2 \%map的模型准确性。
translated by 谷歌翻译