强大的彩票票证假设有希望,即修剪随机初始化的深神经网络可以为具有随机梯度下降的深度学习提供计算有效的替代方案。但是,常见的参数初始化方案和存在证明集中在偏差为零的网络上,因此预言了修剪的潜在通用近似属性。为了填补这一空白,我们将多个初始化方案和存在证明扩展到非零偏差,包括Relu激活函数的显式“外观线性”方法。这些不仅可以实现真正的正交参数初始化,还可以减少潜在的修剪错误。在标准基准数据的实验中,我们进一步强调了非零偏置初始化方案的实际好处,并为最先进的强彩票修剪提供了理论上灵感的扩展。
translated by 谷歌翻译
彩票假设引发了通过识别大型随机初始化神经网络的稀疏子网来实现结构学习的修剪算法的快速发展。这些“胜利门票”的存在理论上已被证明,但在次优稀疏水平。当代修剪算法还在努力确定复杂的学习任务的稀疏彩票票。这个次优稀疏仅仅是存在证明和算法的文物还是修剪方法的一般限制?并且,如果存在非常稀疏的罚单,则当前算法是能够找到它们的当前算法,或者是实现有效网络压缩所需的进一步改进吗?为了系统地回答这些问题,我们推导了一个框架来植物并隐藏大型随机初始化的神经网络中的目标架构。对于机器学习中的三个共同挑战,我们手工制作极其稀疏的网络拓扑,将它们植入大型神经网络,并评估最先进的彩票修剪方法。我们发现,修剪算法的当前局限性识别极其稀疏的票证是算法的,而不是基本的性质,并且预期我们的种植框架将促进有效修剪算法的未来发展,因为我们已经解决了所提出的领域缺失基线的问题Frankle等人。
translated by 谷歌翻译
彩票假设猜测稀疏子网的存在大型随机初始化的深神经网络,可以在隔离中成功培训。最近的工作已经通过实验观察到这些门票中的一些可以在各种任务中实际重复使用,以某种形式的普遍性暗示。我们正规化这一概念,理论上证明不仅存在此类环球票,而且还不需要进一步培训。我们的证据介绍了一些与强化强烈彩票票据相关的技术创新,包括延长子集合结果的扩展和利用更高量的深度的策略。我们的明确稀疏建设普遍函数家庭可能具有独立的兴趣,因为它们突出了单变量卷积架构引起的代表效益。
translated by 谷歌翻译
Consider the multivariate nonparametric regression model. It is shown that estimators based on sparsely connected deep neural networks with ReLU activation function and properly chosen network architecture achieve the minimax rates of convergence (up to log nfactors) under a general composition assumption on the regression function. The framework includes many well-studied structural constraints such as (generalized) additive models. While there is a lot of flexibility in the network architecture, the tuning parameter is the sparsity of the network. Specifically, we consider large networks with number of potential network parameters exceeding the sample size. The analysis gives some insights into why multilayer feedforward neural networks perform well in practice. Interestingly, for ReLU activation function the depth (number of layers) of the neural network architectures plays an important role and our theory suggests that for nonparametric regression, scaling the network depth with the sample size is natural. It is also shown that under the composition assumption wavelet estimators can only achieve suboptimal rates.
translated by 谷歌翻译
我们证明了由例如He等人提出的广泛使用的方法。(2015年)并使用梯度下降对最小二乘损失进行训练并不普遍。具体而言,我们描述了一大批一维数据生成分布,较高的概率下降只会发现优化景观的局部最小值不好,因为它无法将其偏离偏差远离其初始化,以零移动。。事实证明,在这些情况下,即使目标函数是非线性的,发现的网络也基本执行线性回归。我们进一步提供了数值证据,表明在实际情况下,对于某些多维分布而发生这种情况,并且随机梯度下降表现出相似的行为。我们还提供了有关初始化和优化器的选择如何影响这种行为的经验结果。
translated by 谷歌翻译
The fundamental learning theory behind neural networks remains largely open. What classes of functions can neural networks actually learn? Why doesn't the trained network overfit when it is overparameterized?In this work, we prove that overparameterized neural networks can learn some notable concept classes, including two and three-layer networks with fewer parameters and smooth activations. Moreover, the learning can be simply done by SGD (stochastic gradient descent) or its variants in polynomial time using polynomially many samples. The sample complexity can also be almost independent of the number of parameters in the network.On the technique side, our analysis goes beyond the so-called NTK (neural tangent kernel) linearization of neural networks in prior works. We establish a new notion of quadratic approximation of the neural network (that can be viewed as a second-order variant of NTK), and connect it to the SGD theory of escaping saddle points.
translated by 谷歌翻译
为了理论上了解训练有素的深神经网络的行为,有必要研究来自随机初始化的梯度方法引起的动态。然而,这些模型的非线性和组成结构使得这些动态难以分析。为了克服这些挑战,最近出现了大宽度的渐近学作为富有成效的观点,并导致了对真实世界的深网络的实用洞察。对于双层神经网络,已经通过这些渐近学理解,训练模型的性质根据初始随机权重的规模而变化,从内核制度(大初始方差)到特征学习制度(对于小初始方差)。对于更深的网络,更多的制度是可能的,并且在本文中,我们详细研究了与神经网络的“卑鄙字段”限制相对应的“小”初始化的特定选择,我们称之为可分配的参数化(IP)。首先,我们展示了标准I.I.D.零平均初始化,具有多于四个层的神经网络的可集参数,从无限宽度限制的静止点开始,并且不会发生学习。然后,我们提出了各种方法来避免这种琐碎的行为并详细分析所得到的动态。特别是,这些方法中的一种包括使用大的初始学习速率,并且我们表明它相当于最近提出的最大更新参数化$ \ mu $ p的修改。我们将结果与图像分类任务的数值实验确认,其另外显示出在尚未捕获的激活功能的各种选择之间的行为中的强烈差异。
translated by 谷歌翻译
This work studies training one-hidden-layer overparameterized ReLU networks via gradient descent in the neural tangent kernel (NTK) regime, where, differently from the previous works, the networks' biases are trainable and are initialized to some constant rather than zero. The first set of results of this work characterize the convergence of the network's gradient descent dynamics. Surprisingly, it is shown that the network after sparsification can achieve as fast convergence as the original network. The contribution over previous work is that not only the bias is allowed to be updated by gradient descent under our setting but also a finer analysis is given such that the required width to ensure the network's closeness to its NTK is improved. Secondly, the networks' generalization bound after training is provided. A width-sparsity dependence is presented which yields sparsity-dependent localized Rademacher complexity and a generalization bound matching previous analysis (up to logarithmic factors). As a by-product, if the bias initialization is chosen to be zero, the width requirement improves the previous bound for the shallow networks' generalization. Lastly, since the generalization bound has dependence on the smallest eigenvalue of the limiting NTK and the bounds from previous works yield vacuous generalization, this work further studies the least eigenvalue of the limiting NTK. Surprisingly, while it is not shown that trainable biases are necessary, trainable bias helps to identify a nice data-dependent region where a much finer analysis of the NTK's smallest eigenvalue can be conducted, which leads to a much sharper lower bound than the previously known worst-case bound and, consequently, a non-vacuous generalization bound.
translated by 谷歌翻译
我们为特殊神经网络架构,称为运营商复发性神经网络的理论分析,用于近似非线性函数,其输入是线性运算符。这些功能通常在解决方案算法中出现用于逆边值问题的问题。传统的神经网络将输入数据视为向量,因此它们没有有效地捕获与对应于这种逆问题中的数据的线性运算符相关联的乘法结构。因此,我们介绍一个类似标准的神经网络架构的新系列,但是输入数据在向量上乘法作用。由较小的算子出现在边界控制中的紧凑型操作员和波动方程的反边值问题分析,我们在网络中的选择权重矩阵中促进结构和稀疏性。在描述此架构后,我们研究其表示属性以及其近似属性。我们还表明,可以引入明确的正则化,其可以从所述逆问题的数学分析导出,并导致概括属性上的某些保证。我们观察到重量矩阵的稀疏性改善了概括估计。最后,我们讨论如何将运营商复发网络视为深度学习模拟,以确定诸如用于从边界测量的声波方程中重建所未知的WAVESTED的边界控制的算法算法。
translated by 谷歌翻译
模型压缩的目的是减小大型神经网络的大小,同时保持可比的性能。结果,通过减少冗余重量,神经元或层,可以大大降低资源有限应用中的计算和内存成本。提出了许多模型压缩算法,这些算法提供了令人印象深刻的经验成功。但是,对模型压缩的理论理解仍然受到限制。一个问题是了解网络是否比另一个相同结构更可压缩。另一个问题是量化有多少人可以通过理论上保证的准确性降解来修剪网络。在这项工作中,我们建议使用对稀疏敏感的$ \ ell_q $ -norm($ 0 <q <1 $)来表征可压缩性,并提供网络中的软稀疏性与受控程度的压缩程度之间的关系准确性降解结合。我们还开发了自适应算法,用于修剪我们理论所告知的网络中的每个神经元。数值研究表明,与标准修剪算法相比,提出的方法的表现有希望。
translated by 谷歌翻译
我们研究了$ \ Mathcal {r} $的结构和统计属性 - 规范最小化由特定目标函数标记的数据集的内侧插值。$ \ MATHCAL {R} $ - 标准是两层神经网络的电感偏差的基础,最近引入了捕获网络权重大小的功能效果,与网络宽度无关。我们发现,即使有适合数据的脊函数,这些插值也是本质上的多元功能,而且$ \ Mathcal {r} $ - 规范归纳偏见不足以实现某些学习问题的统计上最佳概括。总的来说,这些结果为与实际神经网络训练有关的感应偏见提供了新的启示。
translated by 谷歌翻译
众所周知,$ O(n)$参数足以让神经网络记住任意$ N $ INPUT-LABE标签对。通过利用深度,我们显示$ O(n ^ {2/3})$参数足以在输入点的分离的温和条件下记住$ n $对。特别是,更深的网络(即使是宽度为3美元),也会显示比浅网络更有成对,这也同意最近的作品对函数近似的深度的好处。我们还提供支持我们理论发现的经验结果。
translated by 谷歌翻译
神经网络修剪对于在预训练的密集网络架构中发现有效,高性能的子网有用。然而,更常见的是,它涉及三步过程 - 预先训练,修剪和重新训练 - 这是计算昂贵的,因为必须完全预先训练的密集模型。幸运的是,已经经过了多种作品,证明可以通过修剪发现高性能的子网,而无需完全预先训练密集网络。旨在理论上分析修剪网络表现良好的密集网络预培训量,我们发现在两层全连接网络上的SGD预训练迭代数量中发现了一个理论界限,超出了由此进行修剪贪婪的前瞻性选择产生了一个达到良好训练错误的子网。该阈值显示在对数上依赖于数据集的大小,这意味着具有较大数据集的实验需要更好地训练通过修剪以执行良好执行的子网。我们经验展示了我们在各种架构和数据集中的理论结果的有效性,包括在Mnist上培训的全连接网络以及在CIFAR10和ImageNet上培训的几个深度卷积神经网络(CNN)架构。
translated by 谷歌翻译
这项调查的目的是介绍对深神经网络的近似特性的解释性回顾。具体而言,我们旨在了解深神经网络如何以及为什么要优于其他经典线性和非线性近似方法。这项调查包括三章。在第1章中,我们回顾了深层网络及其组成非线性结构的关键思想和概念。我们通过在解决回归和分类问题时将其作为优化问题来形式化神经网络问题。我们简要讨论用于解决优化问题的随机梯度下降算法以及用于解决优化问题的后传播公式,并解决了与神经网络性能相关的一些问题,包括选择激活功能,成本功能,过度适应问题和正则化。在第2章中,我们将重点转移到神经网络的近似理论上。我们首先介绍多项式近似中的密度概念,尤其是研究实现连续函数的Stone-WeierStrass定理。然后,在线性近似的框架内,我们回顾了馈电网络的密度和收敛速率的一些经典结果,然后在近似Sobolev函数中进行有关深网络复杂性的最新发展。在第3章中,利用非线性近似理论,我们进一步详细介绍了深度和近似网络与其他经典非线性近似方法相比的近似优势。
translated by 谷歌翻译
It has been observed in practice that applying pruning-at-initialization methods to neural networks and training the sparsified networks can not only retain the testing performance of the original dense models, but also sometimes even slightly boost the generalization performance. Theoretical understanding for such experimental observations are yet to be developed. This work makes the first attempt to study how different pruning fractions affect the model's gradient descent dynamics and generalization. Specifically, this work considers a classification task for overparameterized two-layer neural networks, where the network is randomly pruned according to different rates at the initialization. It is shown that as long as the pruning fraction is below a certain threshold, gradient descent can drive the training loss toward zero and the network exhibits good generalization performance. More surprisingly, the generalization bound gets better as the pruning fraction gets larger. To complement this positive result, this work further shows a negative result: there exists a large pruning fraction such that while gradient descent is still able to drive the training loss toward zero (by memorizing noise), the generalization performance is no better than random guessing. This further suggests that pruning can change the feature learning process, which leads to the performance drop of the pruned neural network. Up to our knowledge, this is the \textbf{first} generalization result for pruned neural networks, suggesting that pruning can improve the neural network's generalization.
translated by 谷歌翻译
本文开发了简单的前馈神经网络,实现了所有连续功能的通用近似性,具有固定的有限数量的神经元。这些神经网络很简单,因为它们的设计具有简单且可增加的连续激活功能$ \ Sigma $利用三角波函数和软片功能。我们证明了$ \ Sigma $ -Activated网络,宽度为36d $ 36d(2d + 1)$和11 $ 11 $可以在任意小错误中估计$ d $ -dimensioanl超级函数上的任何连续功能。因此,对于监督学习及其相关的回归问题,这些网络产生的假设空间,尺寸不小于36d(2d + 1)\ times 11 $的持续功能的空间。此外,由图像和信号分类引起的分类函数在$ \ sigma $ -activated网络生成的假设空间中,宽度为36d(2d + 1)$和12 $ 12 $,当存在$ \的成对不相交的界限子集时mathbb {r} ^ d $,使得同一类的样本位于同一子集中。
translated by 谷歌翻译
深度分离结果提出了对深度神经网络过较浅的架构的好处的理论解释,建立前者具有卓越的近似能力。然而,没有已知的结果,其中更深的架构利用这种优势成为可提供的优化保证。我们证明,当数据由具有满足某些温和假设的径向对称的分布产生的数据时,梯度下降可以使用具有两层S形激活的深度2神经网络有效地学习球指示器功能,并且隐藏层固定在一起训练。由于众所周知,当使用用单层非线性的深度2网络(Safran和Shamir,2017)使用深度2网络时,球指示器难以近似于一定的重型分配,这建立了我们最好的知识,基于第一优化的分离结果,其中近似架构的近似效益在实践中可怕的。我们的证明技术依赖于随机特征方法,该方法减少了用单个神经元学习的问题,其中新工具需要在数据分布重尾时显示梯度下降的收敛。
translated by 谷歌翻译
强有力的彩票假说(SLTH)规定了足够过度参数(密集的)神经网络中的子网的存在,当随机初始化并且没有任何培训时,可以实现受过全面训练的目标网络的准确性。 \ citet {da2022 -proving}的最新工作表明,SLTH也可以扩展到翻译模棱两可的网络(即CNNS),具有与密集网络中SLT相同的过多叠加级化。但是,现代神经网络能够不仅纳入翻译对称性,而且开发一般的模棱两可的体系结构(例如旋转和排列)一直是一个有力的设计原理。在本文中,我们将slth推广到保留$ g $(即$ g $ equivariant网络)的函数,并以很高的概率证明,可以修剪随机初始初始初始化的过度透明$ g $ - $ g $ - $ g $ equivariant子网网络近似于固定宽度和深度的另一个完全训练的$ g $ equivariant网络。我们进一步证明,我们规定的过透明方案也是误差耐受性的函数。我们为各个组开发了我们的理论,包括重要的理论,例如欧几里得组的子组$ \ text {e}(n)$和对称组的子群体$ g \ leq \ leq \ mathcal {s} _n _n $ - 允许我们找到用于MLP,CNN,$ \ text {e}(2)$的SLTS,并以$ \ text {e}(2)$ - 通知CNN和置换量表等度性网络作为我们统一框架的特定实例,该框架完全扩展了先前的工作。从经验上讲,我们通过修剪过度叠加的$ \ text {e}(2)$来验证我们的理论,并传达CNN和消息传递GNN,以匹配给定的错误耐受性内受过训练的目标网络的性能。
translated by 谷歌翻译
We propose a simultaneous learning and pruning algorithm capable of identifying and eliminating irrelevant structures in a neural network during the early stages of training. Thus, the computational cost of subsequent training iterations, besides that of inference, is considerably reduced. Our method, based on variational inference principles using Gaussian scale mixture priors on neural network weights, learns the variational posterior distribution of Bernoulli random variables multiplying the units/filters similarly to adaptive dropout. Our algorithm, ensures that the Bernoulli parameters practically converge to either 0 or 1, establishing a deterministic final network. We analytically derive a novel hyper-prior distribution over the prior parameters that is crucial for their optimal selection and leads to consistent pruning levels and prediction accuracy regardless of weight initialization or the size of the starting network. We prove the convergence properties of our algorithm establishing theoretical and practical pruning conditions. We evaluate the proposed algorithm on the MNIST and CIFAR-10 data sets and the commonly used fully connected and convolutional LeNet and VGG16 architectures. The simulations show that our method achieves pruning levels on par with state-of the-art methods for structured pruning, while maintaining better test-accuracy and more importantly in a manner robust with respect to network initialization and initial size.
translated by 谷歌翻译
我们为神经网络提出了一种新颖,结构化修剪算法 - 迭代,稀疏结构修剪算法,称为I-Spasp。从稀疏信号恢复的思想启发,I-Spasp通过迭代地识别网络内的较大的重要参数组(例如,滤波器或神经元),这些参数组大多数对修剪和密集网络输出之间的残差贡献,然后基于这些组阈值以较小的预定定义修剪比率。对于具有Relu激活的双层和多层网络架构,我们展示了通过多项式修剪修剪诱导的错误,该衰减是基于密集网络隐藏表示的稀疏性任意大的。在我们的实验中,I-Spasp在各种数据集(即MNIST和ImageNet)和架构(即馈送前向网络,Resnet34和MobileNetv2)中进行评估,其中显示用于发现高性能的子网和改进经过几种数量级的可提供基线方法的修剪效率。简而言之,I-Spasp很容易通过自动分化实现,实现强大的经验结果,具有理论收敛保证,并且是高效的,因此将自己区分开作为少数几个计算有效,实用,实用,实用,实用,实用,实用,实用,实用和可提供的修剪算法之一。
translated by 谷歌翻译