有效的全球优化是一种广泛使用的方法,用于优化昂贵的黑盒功能,例如调谐参数,设计新材料等。尽管它很受欢迎,但鉴于其广泛使用,较少的关注来分析问题的固有硬度,重要的是要了解有效的全球优化算法的基本限制。在本文中,我们研究了有效的全球优化问题的最严重的复杂性,并且与现有的内核特异性结果相反,我们得出了一个统一的下限,以根据球的度量熵的指标,以实现有效的全局优化的复杂性在相应的繁殖内核希尔伯特空间〜(RKHS)中。具体而言,我们表明,如果存在确定性算法,该算法在$ t $函数评估中实现了任何函数$ f \ in s $ in s $ f \ in $ t $函数评估的次优差距,则有必要至少是$ \ omemega \ left(\ frac {\ log \ mathcal {n}(s(s(\ Mathcal {x})),4 \ epsilon,\ | \ | \ cdot \ cdot \ | _ \ iftty)} {\ log(\ frac {\ frac {r} {r} {\ epsilon {\ epsilon })}} \ right)$,其中$ \ mathcal {n}(\ cdot,\ cdot,\ cdot)$是覆盖号码,$ s $是$ 0 $ $ 0 $,RKHS中的RADIUS $ r $,并且$ s(\ mathcal {x})$是可行套装$ \ mathcal {x} $的$ s $的限制。此外,我们表明,这种下限几乎与常用平方指数核的非自适应搜索算法和具有较大平滑度参数$ \ nu $的垫子\'ern内核所获得的上限匹配,最多可替换为$ $ $ d/2 $ by $ d $和对数项$ \ log \ frac {r} {\ epsilon} $。也就是说,我们的下限对于这些内核几乎是最佳的。
translated by 谷歌翻译
We consider optimizing a function network in the noise-free grey-box setting with RKHS function classes, where the exact intermediate results are observable. We assume that the structure of the network is known (but not the underlying functions comprising it), and we study three types of structures: (1) chain: a cascade of scalar-valued functions, (2) multi-output chain: a cascade of vector-valued functions, and (3) feed-forward network: a fully connected feed-forward network of scalar-valued functions. We propose a sequential upper confidence bound based algorithm GPN-UCB along with a general theoretical upper bound on the cumulative regret. For the Mat\'ern kernel, we additionally propose a non-adaptive sampling based method along with its theoretical upper bound on the simple regret. We also provide algorithm-independent lower bounds on the simple regret and cumulative regret, showing that GPN-UCB is near-optimal for chains and multi-output chains in broad cases of interest.
translated by 谷歌翻译
Many applications require optimizing an unknown, noisy function that is expensive to evaluate. We formalize this task as a multiarmed bandit problem, where the payoff function is either sampled from a Gaussian process (GP) or has low RKHS norm. We resolve the important open problem of deriving regret bounds for this setting, which imply novel convergence rates for GP optimization. We analyze GP-UCB, an intuitive upper-confidence based algorithm, and bound its cumulative regret in terms of maximal information gain, establishing a novel connection between GP optimization and experimental design. Moreover, by bounding the latter in terms of operator spectra, we obtain explicit sublinear regret bounds for many commonly used covariance functions. In some important cases, our bounds have surprisingly weak dependence on the dimensionality. In our experiments on real sensor data, GP-UCB compares favorably with other heuristical GP optimization approaches.
translated by 谷歌翻译
我们考虑基于嘈杂的强盗反馈优化黑盒功能的问题。内核强盗算法为此问题显示了强大的实证和理论表现。然而,它们严重依赖于模型所指定的模型,并且没有它可能会失败。相反,我们介绍了一个\ emph {isspecified}内塞的强盗设置,其中未知函数可以是$ \ epsilon $ - 在一些再现内核希尔伯特空间(RKHS)中具有界限范数的函数均匀近似。我们设计高效实用的算法,其性能在模型误操作的存在下最微小地降低。具体而言,我们提出了一种基于高斯过程(GP)方法的两种算法:一种乐观的EC-GP-UCB算法,需要了解误操作误差,并相断的GP不确定性采样,消除型算法,可以适应未知模型拼盘。我们在$ \ epsilon $,时间范围和底层内核方面提供累积遗憾的上限,我们表明我们的算法达到了$ \ epsilon $的最佳依赖性,而没有明确的误解知识。此外,在一个随机的上下文设置中,我们表明EC-GP-UCB可以有效地与遗憾的平衡策略有效地结合,尽管不知道$ \ epsilon $尽管不知道,但仍然可以获得类似的遗憾范围。
translated by 谷歌翻译
基于内核的模型,例如内核脊回归和高斯工艺在机器学习应用程序中无处不在,用于回归和优化。众所周知,基于内核的模型的主要缺点是高计算成本。给定$ n $样本的数据集,成本增长为$ \ Mathcal {o}(n^3)$。在某些情况下,现有的稀疏近似方法可以大大降低计算成本,从而有效地将实际成本降低到$ \ natercal {o}(n)$。尽管取得了显着的经验成功,但由于近似值而导致的误差的分析范围的现有结果仍然存在显着差距。在这项工作中,我们为NyStr \“ Om方法和稀疏变分高斯过程近似方法提供新颖的置信区间,我们使用模型的近似(代理)后差解释来建立这些方法。我们的置信区间可改善性能。回归和优化问题的界限。
translated by 谷歌翻译
上下文匪徒问题是一个理论上合理的框架,在各个领域都有广泛的应用程序。虽然先前关于此问题的研究通常需要噪声和上下文之间的独立性,但我们的工作考虑了一个更明智的环境,其中噪声成为影响背景和奖励的潜在混杂因素。这样的混杂设置更现实,可以扩展到更广泛的应用程序。但是,未解决的混杂因素将导致奖励功能估计的偏见,从而导致极大的遗憾。为了应对混杂因素带来的挑战,我们应用了双工具变量回归,该回归可以正确识别真正的奖励功能。我们证明,在两种广泛使用的繁殖核希尔伯特空间中,该方法的收敛速率几乎是最佳的。因此,我们可以根据混杂的匪徒问题的理论保证来设计计算高效和遗憾的算法。数值结果说明了我们提出的算法在混杂的匪徒设置中的功效。
translated by 谷歌翻译
我们考虑使用个性化的联合学习,除了全球目标外,每个客户还对最大化个性化的本地目标感兴趣。我们认为,在一般连续的动作空间设置下,目标函数属于繁殖的内核希尔伯特空间。我们提出了基于替代高斯工艺(GP)模型的算法,该算法达到了最佳的遗憾顺序(要归结为各种因素)。此外,我们表明,GP模型的稀疏近似显着降低了客户之间的沟通成本。
translated by 谷歌翻译
考虑了建立UNKONWN地面真相函数值的样本外界限的问题。内核及其相关的希尔伯特空间是本文所采用的主要形式主义,以及一个观察模型,在该模型中,输出被有限的测量噪声损坏。噪声可以源于任何紧凑的分布,并且没有对可用数据进行独立假设。在这种情况下,我们显示计算紧密的,有限样本的不确定性范围等于求解参数四次约束线性程序。接下来,建立了我们方法的属性,并研究了其与另一种方法的关系。提出了数值实验,以说明如何在许多情况下应用理论,并将其与其他封闭形式的替代方案进行对比。
translated by 谷歌翻译
当回归函数属于标准的平滑类时,由衍生物的单变量函数组成,衍生物到达$(\ gamma + 1)$ th由Action Anclople或Ae界定的常见常数,众所周知,最小的收敛速率均值平均错误(MSE)是$ \左(\ FRAC {\ SIGMA ^ {2}} {n} \右)^ {\ frac {2 \ gamma + 2} {2 \ gamma + 3}} $ \伽玛$是有限的,样本尺寸$ n \ lightarrow \ idty $。从一个不可思议的观点来看,考虑有限$ N $,本文显示:对于旧的H \“较旧的和SoboLev类,最低限度最佳速率是$ \ frac {\ sigma ^ {2} \ left(\ gamma \ vee1 \右)$ \ frac {n} {\ sigma ^ {2}} \ precsim \ left(\ gamma \ vee1 \右)^ {2 \ gamma + 3} $和$ \ left(\ frac {\ sigma ^ {2}} {n} \右)^ {\ frac {2 \ gamma + 2} $ \ r \ frac {n} {\ sigma ^ {2}}} \ succsim \ left(\ gamma \ vee1 \右)^ {2 \ gamma + 3} $。为了建立这些结果,我们在覆盖和覆盖号码上获得上下界限,以获得$ k的广义H \“较旧的班级$ th($ k = 0,...,\ gamma $)衍生物由上面的参数$ r_ {k} $和$ \ gamma $ th衍生物是$ r _ {\ gamma + 1} - $ lipschitz (以及广义椭圆形的平滑功能)。我们的界限锐化了标准类的古典度量熵结果,并赋予$ \ gamma $和$ r_ {k} $的一般依赖。通过在$ r_ {k} = 1 $以下派生MIMIMAX最佳MSE率,$ r_ {k} \ LEQ \ left(k-1 \右)!$和$ r_ {k} = k!$(与后两个在我们的介绍中有动机的情况)在我们的新熵界的帮助下,我们展示了一些有趣的结果,无法在文献中的现有熵界显示。对于H \“较旧的$ D-$变化函数,我们的结果表明,归一渐近率$ \左(\ frac {\ sigma ^ {2}} {n}右)^ {\ frac {2 \ Gamma + 2} {2 \ Gamma + 2 + D}} $可能是有限样本中的MSE低估。
translated by 谷歌翻译
来自高斯过程(GP)模型的汤普森采样(TS)是一个强大的工具,用于优化黑盒功能。虽然TS享有强烈的理论担保和令人信服的实证性能,但它会引发大量的计算开销,可通过优化预算进行多项式。最近,已经提出了基于稀疏GP模型的可扩展TS方法来增加TS的范围,使其应用​​于足够多模态,嘈杂或组合需要的问题,以便要求解决超过几百个评估。但是,稀疏GPS引入的近似误差使所有现有的后悔界限无效。在这项工作中,我们对可扩展Ts进行了理论和实证分析。我们提供理论担保,并表明可以在标准TS上遗憾地享受可扩展TS的计算复杂性的急剧下降。这些概念索赔是针对合成基准测试的可扩展TS的实际实施,作为现实世界的高通量分子设计任务的一部分。
translated by 谷歌翻译
级别设置估计问题旨在查找域$ {\ cal x} $的所有点,其中一个未知函数$ f:{\ cal x} \ lightarrow \ mathbb {r} $超过阈值$ \ alpha $ 。估计基于可以在$ {\ cal x} $中顺序和自适应地选择的位置获取的嘈杂函数评估。阈值$ \ alpha $可以是\弹性{显式},并提供先验,或\ \ ich {隐式},相对于最佳函数值定义,即$ \ alpha =(1- \ epsilon)f(x_ \ AST)$关于给定$ \ epsilon> 0 $ why $ f(x_ \ ist)$是最大函数值,并且未知。在这项工作中,我们通过将其与最近的自适应实验设计方法相关联,为近期自适应实验设计方法提供了一种新的再现内核盗窃空间(RKHS)设置。我们假设可以通过RKHS中的函数近似于未知的拼写,并为此设置中隐含和显式案件提供新的算法,具有很强的理论保证。此外,在线性(内核)设置中,我们表明我们的界限几乎是最佳的,即,我们的上限与阈值线性匪徒的现有下限匹配。据我们所知,这项工作提供了第一个实例依赖性非渐近的上限,就匹配信息理论下限的水平设定估计的样本复杂性。
translated by 谷歌翻译
Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the journal title. However, use of a template does not certify that the paper has been accepted for publication in the named journal. INFORMS journal templates are for the exclusive purpose of submitting to an INFORMS journal and should not be used to distribute the papers in print or online or to submit the papers to another publication.
translated by 谷歌翻译
在评估目标时,在线优化嘈杂的功能需要在部署系统上进行实验,这是制造,机器人技术和许多其他功能的关键任务。通常,对安全输入的限制是未知的,我们只会获得嘈杂的信息,表明我们违反约束的距离有多近。但是,必须始终保证安全性,不仅是算法的最终输出。我们介绍了一种通用方法,用于在高维非线性随机优化问题中寻求一个固定点,其中在学习过程中保持安全至关重要。我们称为LB-SGD的方法是基于应用随机梯度下降(SGD),其精心选择的自适应步长大小到原始问题的对数屏障近似。我们通过一阶和零阶反馈提供了非凸,凸面和强键平滑约束问题的完整收敛分析。与现有方法相比,我们的方法通过维度可以更好地更新和比例。我们从经验上将样本复杂性和方法的计算成本比较现有的安全学习方法。除了合成基准测试之外,我们还证明了方法对在安全强化学习(RL)中政策搜索任务中最大程度地减少限制违规的有效性。
translated by 谷歌翻译
Despite the significant interest and progress in reinforcement learning (RL) problems with adversarial corruption, current works are either confined to the linear setting or lead to an undesired $\tilde{O}(\sqrt{T}\zeta)$ regret bound, where $T$ is the number of rounds and $\zeta$ is the total amount of corruption. In this paper, we consider the contextual bandit with general function approximation and propose a computationally efficient algorithm to achieve a regret of $\tilde{O}(\sqrt{T}+\zeta)$. The proposed algorithm relies on the recently developed uncertainty-weighted least-squares regression from linear contextual bandit \citep{he2022nearly} and a new weighted estimator of uncertainty for the general function class. In contrast to the existing analysis that heavily relies on the linear structure, we develop a novel technique to control the sum of weighted uncertainty, thus establishing the final regret bounds. We then generalize our algorithm to the episodic MDP setting and first achieve an additive dependence on the corruption level $\zeta$ in the scenario of general function approximation. Notably, our algorithms achieve regret bounds either nearly match the performance lower bound or improve the existing methods for all the corruption levels and in both known and unknown $\zeta$ cases.
translated by 谷歌翻译
基于内核的强盗是一个广泛研究的黑盒优化问题,其中假定目标函数生活在已知的繁殖核Hilbert空间中。尽管在嘈杂的环境中建立了几乎最佳的遗憾界限(达到对数因素),但令人惊讶的是,对于无噪声设置(如果可以在没有观察噪声的情况下可以访问基础函数的确切值)时,却少了。我们遗憾地讨论了几个上限。这些似乎都没有最佳秩序,并在最佳遗憾界的顺序上提供了猜想。
translated by 谷歌翻译
当在未知约束集中任意变化的分布中生成数据时,我们会考虑使用专家建议的预测。这种半反向的设置包括(在极端)经典的I.I.D.设置时,当未知约束集限制为单身人士时,当约束集是所有分布的集合时,不受约束的对抗设置。对冲状态中,对冲算法(长期以来已知是最佳的最佳速率(速率))最近被证明是对I.I.D.的最佳最小值。数据。在这项工作中,我们建议放松I.I.D.通过在约束集的所有自然顺序上寻求适应性来假设。我们在各个级别的Minimax遗憾中提供匹配的上限和下限,表明确定性学习率的对冲在极端之外是次优的,并证明人们可以在各个级别的各个层面上都能适应Minimax的遗憾。我们使用以下规范化领导者(FTRL)框架实现了这种最佳适应性,并采用了一种新型的自适应正则化方案,该方案隐含地缩放为当前预测分布的熵的平方根,而不是初始预测分布的熵。最后,我们提供了新的技术工具来研究FTRL沿半逆转频谱的统计性能。
translated by 谷歌翻译
我们考虑在可实现的环境中进行交互式学习,并开发一般框架,以处理从最佳ARM识别到主动分类的问题。我们开始调查,即观察到可怕算法\ emph {无法实现可实现的设置中最佳最佳状态。因此,我们设计了新的计算有效的算法,可实现最可实现的设置,该算法与对数因子的最小限制相匹配,并且是通用的,适用于包括内核方法的各种功能类,H {\“O}偏置函数,以及凸起功能。我们的算法的样本复杂性可以在众所周知的数量中量化,如延长的教学尺寸和干草堆维度。然而,与直接基于这些组合量的算法不同,我们的算法是计算效率的。实现计算效率,我们的算法使用Monte Carlo“命令运行”算法来从版本空间中的样本,而不是明确地维护版本空间。我们的方法有两个关键优势。首先,简单,由两个统一,贪婪的算法组成。第二,我们的算法具有能够无缝地利用经常可用和在实践中有用的知识。此外为了我们的新理论结果,我们经验证明我们的算法与高斯过程UCB方法具有竞争力。
translated by 谷歌翻译
我们研究了线性函数近似的政策评估问题,并且目前具有强烈的最优性保证的高效实用算法。我们首先通过证明在这个问题中建立基线的下限来建立基线和随机错误。特别是,我们在与转换内核的静止分布相关联的实例相关规范中证明了Oracle复杂性下限,并使用本地渐近最低限度机械在随机误差中证明依赖于随机误差的实例相关的下限IID观察模型。现有算法未能匹配这些下限中的至少一个:为了说明,我们分析了时间差异学习的方差减少变体,特别是它未能实现Oracle复杂性下限。为了解决这个问题,我们开发了加速,方差减少的快速时间差算法(VRFTD),其同时匹配两个下限,并达到实例 - 最优性的强烈概念。最后,我们将VRFTD算法扩展到Markovian观察的设置,并提供与I.I.D中的实例相关的收敛结果。设置到与链条的混合时间成比例的乘法因子。我们的理论保证最佳的最佳保证是通过数值实验证实的。
translated by 谷歌翻译
我们考虑随机环境中在线线性回归的问题。我们派生了在线岭回归和前向算法的高概率遗憾。这使我们能够更准确地比较在线回归算法并消除有界观测和预测的假设。我们的研究由于其增强的界限和鲁棒性对正则化参数而代替脊,所以提出了前向算法的倡导者。此外,我们解释了如何将其集成在涉及线性函数近似的算法中以消除界限假设,而不会恶化理论界限。我们在线性强盗设置展示了这种修改,其中它产生了改进的遗憾范围。最后,我们提供数字实验来说明我们的结果并赞同我们的直觉。
translated by 谷歌翻译
本文以非线性功能近似研究基于模型的匪徒和增强学​​习(RL)。我们建议研究与近似局部最大值的收敛性,因为我们表明,即使对于具有确定性奖励的一层神经网络匪徒,全球收敛在统计上也很棘手。对于非线性匪徒和RL,本文介绍了一种基于模型的算法,即具有在线模型学习者(小提琴)的虚拟攀登,该算法可证明其收敛到局部最大值,其样品复杂性仅取决于模型类的顺序Rademacher复杂性。我们的结果意味着在几种具体设置(例如有限或稀疏模型类别的线性匪徒)和两层神经净匪内的新型全球或本地遗憾界限。一个关键的算法洞察力是,即使对于两层神经净模型类别,乐观也可能导致过度探索。另一方面,为了收敛到本地最大值,如果模型还可以合理地预测真实返回的梯度和Hessian的大小,则足以最大化虚拟返回。
translated by 谷歌翻译