由于其广泛的应用,例如自动驾驶,机器人技术等,认识到Point Cloud视频的人类行为引起了学术界和行业的极大关注。但是,当前的点云动作识别方法通常需要大量的数据,其中具有手动注释和具有较高计算成本的复杂骨干网络,这使得对现实世界应用程序不切实际。因此,本文考虑了半监督点云动作识别的任务。我们提出了一个蒙版的伪标记自动编码器(\ textbf {Maple})框架,以学习有效表示,以较少的注释以供点云动作识别。特别是,我们设计了一个新颖有效的\ textbf {de}耦合\ textbf {s} patial- \ textbf {t} emporal trans \ textbf {pert}(\ textbf {destbrof {destformer})作为maple的backbone。在Destformer中,4D点云视频的空间和时间维度被脱钩,以实现有效的自我注意,以学习长期和短期特征。此外,要从更少的注释中学习判别功能,我们设计了一个蒙版的伪标记自动编码器结构,以指导Destformer从可用框架中重建蒙面帧的功能。更重要的是,对于未标记的数据,我们从分类头中利用伪标签作为从蒙版框架重建功能的监督信号。最后,全面的实验表明,枫树在三个公共基准上取得了优异的结果,并且在MSR-ACTION3D数据集上以8.08 \%的精度优于最先进的方法。
translated by 谷歌翻译
通过深度学习技术的开花,完全有监督的基于骨架的动作识别取得了巨大进步。但是,这些方法需要足够的标记数据,这不容易获得。相比之下,基于自我监督的骨骼的动作识别引起了更多的关注。通过利用未标记的数据,可以学会更多可概括的功能来减轻过度拟合的问题并减少大规模标记的培训数据的需求。受到MAE的启发,我们提出了一个空间式蒙面的自动编码器框架,用于基于3D骨架的自我监管的动作识别(Skeletonmae)。在MAE的掩蔽和重建管道之后,我们利用基于骨架的编码器变压器体系结构来重建蒙版的骨架序列。一种新颖的掩蔽策略,称为时空掩蔽,是根据骨架序列的联合级别和框架级别引入的。这种预训练策略使编码器输出可推广的骨骼特征具有空间和时间依赖性。给定未掩盖的骨架序列,编码器用于动作识别任务。广泛的实验表明,我们的骨架达到了出色的性能,并优于NTU RGB+D和NTU RGB+D 120数据集的最新方法。
translated by 谷歌翻译
基于变压器的自我监督表示方法学习方法从未标记的数据集中学习通用功能,以提供有用的网络初始化参数,用于下游任务。最近,基于掩盖3D点云数据的局部表面斑块的自我监督学习的探索还不足。在本文中,我们提出了3D点云表示学习中的蒙版自动编码器(缩写为MAE3D),这是一种新颖的自动编码范式,用于自我监督学习。我们首先将输入点云拆分为补丁,然后掩盖其中的一部分,然后使用我们的补丁嵌入模块提取未掩盖的补丁的功能。其次,我们采用贴片的MAE3D变形金刚学习点云补丁的本地功能以及补丁之间的高级上下文关系,并完成蒙版补丁的潜在表示。我们将点云重建模块与多任务损失一起完成,从而完成不完整的点云。我们在Shapenet55上进行了自我监督的预训练,并使用点云完成前文本任务,并在ModelNet40和ScanObjectnn(PB \ _t50 \ _RS,最难的变体)上微调预训练的模型。全面的实验表明,我们的MAE3D从Point Cloud补丁提取的本地功能对下游分类任务有益,表现优于最先进的方法($ 93.4 \%\%\%\%$和$ 86.2 \%$ $分类精度)。
translated by 谷歌翻译
尽管完全监督的人类骨架序列建模成功,但使用自我监督的预训练进行骨架序列表示学习一直是一个活跃的领域,因为很难在大规模上获取特定于任务的骨骼注释。最近的研究重点是使用对比学习学习视频级别的时间和歧视性信息,但忽略了人类骨骼的层次空间时间。与视频级别的这种表面监督不同,我们提出了一种自我监督的分层预训练方案,该方案纳入了基于层次变压器的骨骼骨骼序列编码器(HI-TRS),以明确捕获空间,短期和长期和长期框架,剪辑和视频级别的时间依赖性分别。为了通过HI-TR评估提出的自我监督预训练方案,我们进行了广泛的实验,涵盖了三个基于骨架的下游任务,包括动作识别,动作检测和运动预测。根据监督和半监督评估协议,我们的方法实现了最新的性能。此外,我们证明了我们的模型在训练阶段中学到的先验知识具有强大的下游任务的转移能力。
translated by 谷歌翻译
点云的学习表示是3D计算机视觉中的重要任务,尤其是没有手动注释的监督。以前的方法通常会从自动编码器中获得共同的援助,以通过重建输入本身来建立自我判断。但是,现有的基于自我重建的自动编码器仅关注全球形状,而忽略本地和全球几何形状之间的层次结构背景,这是3D表示学习的重要监督。为了解决这个问题,我们提出了一个新颖的自我监督点云表示学习框架,称为3D遮挡自动编码器(3D-OAE)。我们的关键想法是随机遮住输入点云的某些局部补丁,并通过使用剩余的可见图来恢复遮挡的补丁,从而建立监督。具体而言,我们设计了一个编码器,用于学习可见的本地贴片的特征,并设计了一个用于利用这些功能预测遮挡贴片的解码器。与以前的方法相反,我们的3D-OAE可以去除大量的斑块,并仅使用少量可见斑块进行预测,这使我们能够显着加速训练并产生非平凡的自我探索性能。训练有素的编码器可以进一步转移到各种下游任务。我们证明了我们在广泛使用基准下的不同判别和生成应用中的最先进方法的表现。
translated by 谷歌翻译
由于数据注释的高成本,半监督行动识别是一个具有挑战性的,但重要的任务是。这个问题的常见方法是用伪标签分配未标记的数据,然后将其作为训练中的额外监督。通常在最近的工作中,通过在标记数据上训练模型来获得伪标签,然后使用模型的自信预测来教授自己。在这项工作中,我们提出了一种更有效的伪标签方案,称为跨模型伪标记(CMPL)。具体地,除了主要骨干内,我们还介绍轻量级辅助网络,并要求他们互相预测伪标签。我们观察到,由于其不同的结构偏差,这两种模型倾向于学习来自同一视频剪辑的互补表示。因此,通过利用跨模型预测作为监督,每个模型都可以受益于其对应物。对不同数据分区协议的实验表明我们对现有替代方案框架的重大改进。例如,CMPL在Kinetics-400和UCF-101上实现了17.6 \%$ 17.6 \%$ 25.1 \%$ 25.使用RGB模态和1 \%$标签数据,优于我们的基线模型,FIXMATCT,以$ 9.0 \% $和10.3美元\%$。
translated by 谷歌翻译
大规模点云的注释仍然耗时,并且对于许多真实世界任务不可用。点云预训练是用于获得快速适配的可扩展模型的一个潜在解决方案。因此,在本文中,我们调查了一种新的自我监督学习方法,称为混合和解除戒(MD),用于点云预培训。顾名思义,我们探索如何将原始点云与混合点云分开,并利用这一具有挑战的任务作为模型培训的借口优化目标。考虑到原始数据集中的有限培训数据,这远低于普遍的想象,混合过程可以有效地产生更高质量的样本。我们构建一个基线网络以验证我们的直觉,只包含两个模块,编码器和解码器。给定混合点云,首先预先训练编码器以提取语义嵌入。然后,利用实例 - 自适应解码器根据嵌入来解除点云。尽管简单,编码器本质上是能够在训练后捕获点云关键点,并且可以快速适应下游任务,包括预先训练和微调范例的分类和分割。在两个数据集上的广泛实验表明编码器+我们的(MD)显着超越了从头划痕培训的编码器和快速收敛的编码器。在消融研究中,我们进一步研究了每个部件的效果,并讨论了拟议的自我监督学习策略的优势。我们希望这种自我监督的学习尝试点云可以铺平了减少对大规模标记数据的深度学习模型依赖的方式,并在将来节省了大量的注释成本。
translated by 谷歌翻译
半监控视频动作识别倾向于使深神经网络能够实现显着性能,即使具有非常有限的标记数据。然而,现有方法主要从当前的基于图像的方法转移(例如,FixMatch)。不具体利用时间动态和固有的多模式属性,它们的结果可能是次优。为了更好地利用视频中的编码的时间信息,我们将时间梯度引入了本文中的更多细小特征提取的额外模态。具体而言,我们的方法明确地蒸馏从时间梯度(TG)的细粒度运动表示,并施加不同方式的一致性(即RGB和TG)。在推理期间,没有额外的计算或参数,在没有额外的计算或参数的情况下显着提高了半监督动作识别的性能。我们的方法在若干典型的半监督设置(即标记数据的不同比率)下实现三个视频动作识别基准(即动态-400,UCF-101和HMDB-51)的最先进的性能。
translated by 谷歌翻译
蒙面自动编码在图像和语言领域的自我监督学习方面取得了巨大的成功。但是,基于面具的预处理尚未显示出对点云理解的好处,这可能是由于PointNet(PointNet)无法正确处理训练的标准骨架,而不是通过训练期间掩盖引入的测试分配不匹配。在本文中,我们通过提出一个判别性掩码式变压器框架,maskPoint}来弥合这一差距。我们的关键想法是将点云表示为离散的占用值(1如果点云的一部分;如果不是的,则为0),并在蒙版对象点和采样噪声点之间执行简单的二进制分类作为代理任务。这样,我们的方法是对点云中的点采样差异的强大,并促进了学习丰富的表示。我们在几个下游任务中评估了验证的模型,包括3D形状分类,分割和现实词对象检测,并展示了最新的结果,同时获得了明显的预读速度(例如,扫描仪上的4.1倍)先前的最新变压器基线。代码可在https://github.com/haotian-liu/maskpoint上找到。
translated by 谷歌翻译
我们呈现Point-Bert,一种用于学习变压器的新范式,以概括BERT对3D点云的概念。灵感来自BERT,我们将屏蔽点建模(MPM)任务设计为预列火车点云变压器。具体地,我们首先将点云划分为几个本地点修补程序,并且具有离散变化性AutoEncoder(DVAE)的点云标记器被设计为生成包含有意义的本地信息的离散点令牌。然后,我们随机掩盖了一些输入点云的补丁并将它们送入骨干变压器。预训练目标是在销售器获得的点代币的监督下恢复蒙面地点的原始点令牌。广泛的实验表明,拟议的BERT风格的预训练策略显着提高了标准点云变压器的性能。配备了我们的预培训策略,我们表明,纯变压器架构对ModelNet40的准确性为93.8%,在ScanObjectnn的最艰难的设置上的准确性为83.1%,超越精心设计的点云模型,手工制作的设计更少。我们还证明,Point-Bert从新的任务和域中获悉的表示,我们的模型在很大程度上推动了几个射击点云分类任务的最先进。代码和预先训练的型号可在https://github.com/lulutang0608/pint -bert上获得
translated by 谷歌翻译
基于骨架的动作识别广泛用于各种区域,例如监视和人机相互作用。现有模型主要以监督方式学习,从而根据标签昂贵时可能是不可行的大规模标记数据。在本文中,我们提出了一种新的对比度重建表示学习网络(CRRL),其同时为无监督的基于骨架的动作识别捕获姿势和运动动力学。它主要由三部分组成:序列重建器,对比运动学习者和信息定影器。序列重建者通过重建学习从骨架坐标序列的表示,因此学习的表示倾向于聚焦在琐碎的姿势坐标上并且在运动学习中犹豫不决。为了增强运动的学习,对比运动学习者分别在从坐标序列和附加速度序列中学到的表示之间进行对比学习。最后,在信息定位器中,我们探讨了将序列重建器和对比运动学习者结合的各种策略,并建议通过基于知识蒸馏的融合策略同时捕获姿势和动作,从而将动作学习从对比运动学习者转移到序列中的序列重建者。在若干基准测试中,即NTU RGB + D 60,NTU RGB + D 120,CMU Mocap和NW-UCLA的实验结果证明了所提出的CRRL方法​​的承诺,到目前为止的现有方法。
translated by 谷歌翻译
通常需要在大型数据集上进行预训练的视频变压器,以在相对较小的数据集上实现首要性能。在本文中,我们表明视频蒙面的自动编码器(Videomae)是用于自我监督视频预训练(SSVP)的数据效率学习者。我们的启发受到了最近的ImageMae的启发,并提出了具有极高比例的定制视频管掩蔽。这种简单的设计使视频重建成为更具挑战性的自我判断任务,从而鼓励在此预训练过程中提取更有效的视频表示。我们在SSVP上获得了三个重要发现:(1)屏蔽比的比例极高(即90%至95%)仍然可以产生良好的视频性能。在时间上冗余的视频内容比图像更高的掩蔽率。 (2)视频在很小的数据集(即3K-4K视频)上取得了令人印象深刻的结果,而无需使用任何额外的数据。 (3)视频表明,数据质量比SSVP的数据数量更重要。在培训和目标数据集之间的域转移是一个重要问题。值得注意的是,我们与香草VIT的视频在动力学400上可以达到85.8%,在不使用任何额外数据的情况下,在HMDB51上的V2上有75.3%,UCF101的某些东西为75.3%,在UCF101上获得90.8%,HMDB51上的90.8%和61.1%。代码可从https://github.com/mcg-nju/videomae获得。
translated by 谷歌翻译
现有的时间动作检测(TAD)方法依赖于带有细分级注释的大量培训数据。因此,收集和注释这样的训练集非常昂贵且不可计入。半监督的TAD(SS-TAD)通过利用规模自由的未标记视频来减轻此问题。但是,SS-Tad也比有监督的TAD更具挑战性的问题,因此研究得多。先前的SS-TAD方法直接结合了现有的基于建议的TAD方法和SSL方法。由于它们的顺序定位(例如,提案生成)和分类设计,它们很容易出现误差传播。为了克服这一局限性,在这项工作中,我们提出了一种基于无建议的时间掩模(点)的新型半监督时间动作检测模型,并具有平行的定位(掩码生成)和分类体系结构。这种新颖的设计通过切断介于两者之间的错误传播途径来有效地消除了定位和分类之间的依赖性。我们进一步介绍了用于预测细化的分类和本地化之间的交互机制,以及用于自我监督模型预训练的新借口任务。对两个标准基准测试的广泛实验表明,我们的现场表现要优于最先进的替代方案,通常是很大的边距。 pytorch实施现场可在https://github.com/sauradip/spot上获得
translated by 谷歌翻译
Semi-Supervised Learning (SSL) has recently accomplished successful achievements in various fields such as image classification, object detection, and semantic segmentation, which typically require a lot of labour to construct ground-truth. Especially in the depth estimation task, annotating training data is very costly and time-consuming, and thus recent SSL regime seems an attractive solution. In this paper, for the first time, we introduce a novel framework for semi-supervised learning of monocular depth estimation networks, using consistency regularization to mitigate the reliance on large ground-truth depth data. We propose a novel data augmentation approach, called K-way disjoint masking, which allows the network for learning how to reconstruct invisible regions so that the model not only becomes robust to perturbations but also generates globally consistent output depth maps. Experiments on the KITTI and NYU-Depth-v2 datasets demonstrate the effectiveness of each component in our pipeline, robustness to the use of fewer and fewer annotated images, and superior results compared to other state-of-the-art, semi-supervised methods for monocular depth estimation. Our code is available at https://github.com/KU-CVLAB/MaskingDepth.
translated by 谷歌翻译
蒙面的自动编码器是可扩展的视觉学习者,因为Mae \ Cite {He2022masked}的标题表明,视觉中的自我监督学习(SSL)可能会采用与NLP中类似的轨迹。具体而言,具有蒙版预测(例如BERT)的生成借口任务已成为NLP中的事实上的标准SSL实践。相比之下,他们的歧视性对应物(例如对比度学习)掩埋了视力中的生成方法的早期尝试;但是,蒙版图像建模的成功已恢复了屏蔽自动编码器(过去通常被称为DeNosing AutoCoder)。作为在NLP中与Bert弥合差距的一个里程碑,蒙面自动编码器吸引了对SSL在视觉及其他方面的前所未有的关注。这项工作对蒙面自动编码器进行了全面的调查,以洞悉SSL的有希望的方向。作为第一个使用蒙版自动编码器审查SSL的人,这项工作通过讨论其历史发展,最新进度以及对不同应用的影响,重点介绍其在视觉中的应用。
translated by 谷歌翻译
我们研究了视觉变压器的培训,用于半监督图像分类。变形金刚最近在众多监督的学习任务中表现出令人印象深刻的表现。令人惊讶的是,我们发现视觉变形金刚在半监督的想象中心设置上表现不佳。相比之下,卷积神经网络(CNNS)实现了小标记数据制度的卓越结果。进一步调查揭示了原因是CNN具有强大的空间归纳偏差。灵感来自这一观察,我们介绍了一个联合半监督学习框架,半统一,其中包含变压器分支,卷积分支和精心设计的融合模块,用于分支之间的知识共享。卷积分支在有限监督数据上培训,并生成伪标签,以监督变压器分支对未标记数据的培训。关于Imagenet的广泛实验表明,半统一达到75.5 \%的前1个精度,优于最先进的。此外,我们显示Semifirmer是一般框架,与大多数现代变压器和卷积神经结构兼容。
translated by 谷歌翻译
最近,自我监督的预训练在W.R.T.的各种任务上具有先进的视觉变压器。不同的数据模式,例如图像和3D点云数据。在本文中,我们探讨了基于变压器的3D网格数据分析的学习范式。由于将变压器体系结构应用于新模式通常是非平凡的,因此我们首先将视觉变压器适应3D网格数据处理,即网格变压器。具体而言,我们将网格分为几个非重叠的本地贴片,每个贴片包含相同数量的面部,并使用每个贴片中心点的3D位置形成位置嵌入。受MAE的启发,我们探讨了如何使用基于变压器的结构对3D网格数据进行预训练如何使下游3D网格分析任务受益。我们首先随机掩盖网格的一些补丁,并将损坏的网格馈入网格变形金刚。然后,通过重建蒙版补丁的信息,该网络能够学习网格数据的区分表示。因此,我们命名我们的方法meshmae,可以在网格分析任务(即分类和分割)上产生最先进或可比性的性能。此外,我们还进行了全面的消融研究,以显示我们方法中关键设计的有效性。
translated by 谷歌翻译
在深度学习研究中,自学学习(SSL)引起了极大的关注,引起了计算机视觉和遥感社区的兴趣。尽管计算机视觉取得了很大的成功,但SSL在地球观测领域的大部分潜力仍然锁定。在本文中,我们对在遥感的背景下为计算机视觉的SSL概念和最新发展提供了介绍,并回顾了SSL中的概念和最新发展。此外,我们在流行的遥感数据集上提供了现代SSL算法的初步基准,从而验证了SSL在遥感中的潜力,并提供了有关数据增强的扩展研究。最后,我们确定了SSL未来研究的有希望的方向的地球观察(SSL4EO),以铺平了两个领域的富有成效的相互作用。
translated by 谷歌翻译
Recent work on 4D point cloud sequences has attracted a lot of attention. However, obtaining exhaustively labeled 4D datasets is often very expensive and laborious, so it is especially important to investigate how to utilize raw unlabeled data. However, most existing self-supervised point cloud representation learning methods only consider geometry from a static snapshot omitting the fact that sequential observations of dynamic scenes could reveal more comprehensive geometric details. And the video representation learning frameworks mostly model motion as image space flows, let alone being 3D-geometric-aware. To overcome such issues, this paper proposes a new 4D self-supervised pre-training method called Complete-to-Partial 4D Distillation. Our key idea is to formulate 4D self-supervised representation learning as a teacher-student knowledge distillation framework and let the student learn useful 4D representations with the guidance of the teacher. Experiments show that this approach significantly outperforms previous pre-training approaches on a wide range of 4D point cloud sequence understanding tasks including indoor and outdoor scenarios.
translated by 谷歌翻译
Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision problems. Among their salient benefits, Transformers enable modeling long dependencies between input sequence elements and support parallel processing of sequence as compared to recurrent networks e.g., Long short-term memory (LSTM). Different from convolutional networks, Transformers require minimal inductive biases for their design and are naturally suited as set-functions. Furthermore, the straightforward design of Transformers allows processing multiple modalities (e.g., images, videos, text and speech) using similar processing blocks and demonstrates excellent scalability to very large capacity networks and huge datasets. These strengths have led to exciting progress on a number of vision tasks using Transformer networks. This survey aims to provide a comprehensive overview of the Transformer models in the computer vision discipline. We start with an introduction to fundamental concepts behind the success of Transformers i.e., self-attention, large-scale pre-training, and bidirectional feature encoding. We then cover extensive applications of transformers in vision including popular recognition tasks (e.g., image classification, object detection, action recognition, and segmentation), generative modeling, multi-modal tasks (e.g., visual-question answering, visual reasoning, and visual grounding), video processing (e.g., activity recognition, video forecasting), low-level vision (e.g., image super-resolution, image enhancement, and colorization) and 3D analysis (e.g., point cloud classification and segmentation). We compare the respective advantages and limitations of popular techniques both in terms of architectural design and their experimental value. Finally, we provide an analysis on open research directions and possible future works. We hope this effort will ignite further interest in the community to solve current challenges towards the application of transformer models in computer vision.
translated by 谷歌翻译