我们考虑多级分类的问题,其中普遍选择的查询流到达,并且必须在线分配标签。与寻求最小化错误分类率的传统界定不同,我们将每个查询的总距离最小化到与其正确标签相对应的区域。当通过最近的邻分区确定真正的标签时 - 即点的标签由它最接近欧几里德距离所提供的点,我们表明人们可以实现独立的损失查询总数。我们通过显示学习常规凸集每查询需要几乎线性损耗来补充此结果。我们的结果为语境搜索的几何问题而被遗憾地构建了遗憾的保证。此外,我们制定了一种从多字符分类到二进制分类的新型还原技术,这可能具有独立兴趣。
translated by 谷歌翻译
我们研究上下文搜索,在较高维度中对二进制搜索的概括,该搜索捕获了设置,例如基于功能的动态定价。该问题的标准公式假定代理根据特定的均匀响应模型起作用。但是,实际上,某些反应可能会受到对抗的腐败。现有的算法在很大程度上取决于假定的响应模型(大约)对所有试剂的准确性,并且在存在一些此类任意错误的情况下的性能较差。当某些代理商以与基本响应模型不一致的方式行为时,我们会启动上下文搜索的研究。特别是,我们提供两种算法,一种基于多维二进制搜索方法,另一种基于梯度下降。我们表明,这些算法在没有对抗性腐败及其性能与此类代理的数量优雅地降低的情况下获得了近乎最佳的遗憾,这为在任何对抗性噪声模型中提供了第一个结果,以进行上下文搜索。我们的技术从学习理论,游戏理论,高维几何形状和凸分析中汲取灵感。
translated by 谷歌翻译
We study the relationship between adversarial robustness and differential privacy in high-dimensional algorithmic statistics. We give the first black-box reduction from privacy to robustness which can produce private estimators with optimal tradeoffs among sample complexity, accuracy, and privacy for a wide range of fundamental high-dimensional parameter estimation problems, including mean and covariance estimation. We show that this reduction can be implemented in polynomial time in some important special cases. In particular, using nearly-optimal polynomial-time robust estimators for the mean and covariance of high-dimensional Gaussians which are based on the Sum-of-Squares method, we design the first polynomial-time private estimators for these problems with nearly-optimal samples-accuracy-privacy tradeoffs. Our algorithms are also robust to a constant fraction of adversarially-corrupted samples.
translated by 谷歌翻译
本文展示了如何适应$ k $ -MEANS问题的几种简单和经典的基于采样的算法,以使用离群值设置。最近,Bhaskara等人。 (Neurips 2019)展示了如何将古典$ K $ -MEANS ++算法适应与异常值的设置。但是,他们的算法需要输出$ o(\ log(k)\ cdot z)$ outiers,其中$ z $是true Outliers的数量,以匹配$ o(\ log k)$ - 近似值的$ k的近似保证$ -Means ++。在本文中,我们以他们的想法为基础,并展示了如何适应几个顺序和分布式的$ k $ - 均值算法,但使用离群值来设置,但具有更强的理论保证:我们的算法输出$(1+ \ VAREPSILON)z $ OUTLIERS Z $ OUTLIERS在实现$ o(1 / \ varepsilon)$ - 近似目标函数的同时。在顺序世界中,我们通过改编Lattanzi和Sohler的最新算法来实现这一目标(ICML 2019)。在分布式设置中,我们适应了Guha等人的简单算法。 (IEEE Trans。知道和数据工程2003)以及Bahmani等人的流行$ K $ -Means $ \ | $。 (PVLDB 2012)。我们技术的理论应用是一种具有运行时间$ \ tilde {o}(nk^2/z)$的算法,假设$ k \ ll z \ ll n $。这与Omacle模型中此问题的$ \ Omega(NK^2/z)$的匹配下限相互补。
translated by 谷歌翻译
我们研究了用于线性回归的主动采样算法,该算法仅旨在查询目标向量$ b \ in \ mathbb {r} ^ n $的少量条目,并将近最低限度输出到$ \ min_ {x \ In \ mathbb {r} ^ d} \ | ax-b \ | $,其中$ a \ in \ mathbb {r} ^ {n \ times d} $是一个设计矩阵和$ \ | \ cdot \ | $是一些损失函数。对于$ \ ell_p $ norm回归的任何$ 0 <p <\ idty $,我们提供了一种基于Lewis权重采样的算法,其使用只需$ \ tilde {o}输出$(1+ \ epsilon)$近似解决方案(d ^ {\ max(1,{p / 2})} / \ mathrm {poly}(\ epsilon))$查询到$ b $。我们表明,这一依赖于$ D $是最佳的,直到对数因素。我们的结果解决了陈和Derezi的最近开放问题,陈和Derezi \'{n} Ski,他们为$ \ ell_1 $ norm提供了附近的最佳界限,以及$ p \中的$ \ ell_p $回归的次优界限(1,2) $。我们还提供了$ O的第一个总灵敏度上限(D ^ {\ max \ {1,p / 2 \} \ log ^ 2 n)$以满足最多的$ p $多项式增长。这改善了Tukan,Maalouf和Feldman的最新结果。通过将此与我们的技术组合起来的$ \ ell_p $回归结果,我们获得了一个使$ \ tilde o的活动回归算法(d ^ {1+ \ max \ {1,p / 2 \}} / \ mathrm {poly}。 (\ epsilon))$疑问,回答陈和德里兹的另一个打开问题{n}滑雪。对于Huber损失的重要特殊情况,我们进一步改善了我们对$ \ tilde o的主动样本复杂性的绑定(d ^ {(1+ \ sqrt2)/ 2} / \ epsilon ^ c)$和非活跃$ \ tilde o的样本复杂性(d ^ {4-2 \ sqrt 2} / \ epsilon ^ c)$,由于克拉克森和伍德拉夫而改善了Huber回归的以前的D ^ 4 $。我们的敏感性界限具有进一步的影响,使用灵敏度采样改善了各种先前的结果,包括orlicz规范子空间嵌入和鲁棒子空间近似。最后,我们的主动采样结果为每种$ \ ell_p $ norm提供的第一个Sublinear时间算法。
translated by 谷歌翻译
我们在高斯分布下使用Massart噪声与Massart噪声进行PAC学习半个空间的问题。在Massart模型中,允许对手将每个点$ \ mathbf {x} $的标签与未知概率$ \ eta(\ mathbf {x})\ leq \ eta $,用于某些参数$ \ eta \ [0,1 / 2] $。目标是找到一个假设$ \ mathrm {opt} + \ epsilon $的错误分类错误,其中$ \ mathrm {opt} $是目标半空间的错误。此前已经在两个假设下研究了这个问题:(i)目标半空间是同质的(即,分离超平面通过原点),并且(ii)参数$ \ eta $严格小于$ 1/2 $。在此工作之前,当除去这些假设中的任何一个时,不知道非增长的界限。我们研究了一般问题并建立以下内容:对于$ \ eta <1/2 $,我们为一般半个空间提供了一个学习算法,采用样本和计算复杂度$ d ^ {o_ {\ eta}(\ log(1 / \ gamma) )))}} \ mathrm {poly}(1 / \ epsilon)$,其中$ \ gamma = \ max \ {\ epsilon,\ min \ {\ mathbf {pr} [f(\ mathbf {x})= 1], \ mathbf {pr} [f(\ mathbf {x})= -1] \} \} $是目标半空间$ f $的偏差。现有的高效算法只能处理$ \ gamma = 1/2 $的特殊情况。有趣的是,我们建立了$ d ^ {\ oomega(\ log(\ log(\ log(\ log))}}的质量匹配的下限,而是任何统计查询(SQ)算法的复杂性。对于$ \ eta = 1/2 $,我们为一般半空间提供了一个学习算法,具有样本和计算复杂度$ o_ \ epsilon(1)d ^ {o(\ log(1 / epsilon))} $。即使对于均匀半空间的子类,这个结果也是新的;均匀Massart半个空间的现有算法为$ \ eta = 1/2 $提供可持续的保证。我们与D ^ {\ omega(\ log(\ log(\ log(\ log(\ epsilon))} $的近似匹配的sq下限补充了我们的上限,这甚至可以为同类半空间的特殊情况而保持。
translated by 谷歌翻译
我们研究了非参数在线回归中的快速收敛速度,即遗憾的是关于具有有界复杂度的任意函数类来定义后悔。我们的贡献是两倍: - 在绝对损失中的非参数网上回归的可实现设置中,我们提出了一种随机适当的学习算法,该算法在假设类的顺序脂肪破碎尺寸方面获得了近乎最佳的错误。在与一类Littlestone维度$ D $的在线分类中,我们的绑定减少到$ d \ cdot {\ rm poly} \ log t $。这结果回答了一个问题,以及适当的学习者是否可以实现近乎最佳错误的界限;以前,即使在线分类,绑定的最知名错误也是$ \ tilde o(\ sqrt {dt})$。此外,对于真实值(回归)设置,在这项工作之前,界定的最佳错误甚至没有以不正当的学习者所知。 - 使用上述结果,我们展示了Littlestone维度$ D $的一般总和二进制游戏的独立学习算法,每个玩家达到后悔$ \ tilde o(d ^ {3/4} \ cdot t ^ {1 / 4})$。该结果概括了Syrgkanis等人的类似结果。 (2015)谁表明,在有限的游戏中,最佳遗憾可以从普通的o(\ sqrt {t})$中的$ o(\ sqrt {t})为游戏设置中的$ o(t ^ {1/4})$。要建立上述结果,我们介绍了几种新技术,包括:分层聚合规则,以实现对实际类别的最佳错误,Hanneke等人的适当在线可实现学习者的多尺度扩展。 (2021),一种方法来表明这种非参数学习算法的输出是稳定的,并且证明Minimax定理在所有在线学习游戏中保持。
translated by 谷歌翻译
我们考虑使用对抗鲁棒性学习的样本复杂性。对于此问题的大多数现有理论结果已经考虑了数据中不同类别在一起或重叠的设置。通过一些实际应用程序,我们认为,相比之下,存在具有完美精度和稳健性的分类器的分类器的良好分离的情况,并表明样品复杂性叙述了一个完全不同的故事。具体地,对于线性分类器,我们显示了大类分离的分布式,其中任何算法的预期鲁棒丢失至少是$ \ω(\ FRAC {D} {n})$,而最大边距算法已预期标准亏损$ o(\ frac {1} {n})$。这表明了通过现有技术不能获得的标准和鲁棒损耗中的间隙。另外,我们介绍了一种算法,给定鲁棒率半径远小于类之间的间隙的实例,给出了预期鲁棒损失的解决方案是$ O(\ FRAC {1} {n})$。这表明,对于非常好的数据,可实现$ O(\ FRAC {1} {n})$的收敛速度,否则就是这样。我们的结果适用于任何$ \ ell_p $ norm以$ p> 1 $(包括$ p = \ idty $)为稳健。
translated by 谷歌翻译
在古典语境匪徒问题中,在每轮$ t $,学习者观察一些上下文$ c $,选择一些动作$ i $执行,并收到一些奖励$ r_ {i,t}(c)$。我们考虑此问题的变体除了接收奖励$ r_ {i,t}(c)$之外,学习者还要学习其他一些上下文$的$ r_ {i,t}(c')$的值C'$ in设置$ \ mathcal {o} _i(c)$;即,通过在不同的上下文下执行该行动来实现的奖励\ mathcal {o} _i(c)$。这种变体出现在若干战略设置中,例如学习如何在非真实的重复拍卖中出价,最热衷于随着许多平台转换为运行的第一价格拍卖。我们将此问题称为交叉学习的上下文匪徒问题。古典上下围匪徒问题的最佳算法达到$ \ tilde {o}(\ sqrt {ckt})$遗憾针对所有固定策略,其中$ c $是上下文的数量,$ k $的行动数量和$ $次数。我们设计并分析了交叉学习的上下文匪徒问题的新算法,并表明他们的遗憾更好地依赖上下文的数量。在选择动作时学习所有上下文的奖励的完整交叉学习下,即设置$ \ mathcal {o} _i(c)$包含所有上下文,我们显示我们的算法实现后悔$ \ tilde {o}( \ sqrt {kt})$,删除$ c $的依赖。对于任何其他情况,即在部分交叉学习下,$ | \ mathcal {o} _i(c)| <c $ for $(i,c)$,遗憾界限取决于如何设置$ \ mathcal o_i(c)$影响上下文之间的交叉学习的程度。我们从Ad Exchange运行一流拍卖的广告交换中模拟了我们的真实拍卖数据的算法,并表明了它们优于传统的上下文强盗算法。
translated by 谷歌翻译
The Forster transform is a method of regularizing a dataset by placing it in {\em radial isotropic position} while maintaining some of its essential properties. Forster transforms have played a key role in a diverse range of settings spanning computer science and functional analysis. Prior work had given {\em weakly} polynomial time algorithms for computing Forster transforms, when they exist. Our main result is the first {\em strongly polynomial time} algorithm to compute an approximate Forster transform of a given dataset or certify that no such transformation exists. By leveraging our strongly polynomial Forster algorithm, we obtain the first strongly polynomial time algorithm for {\em distribution-free} PAC learning of halfspaces. This learning result is surprising because {\em proper} PAC learning of halfspaces is {\em equivalent} to linear programming. Our learning approach extends to give a strongly polynomial halfspace learner in the presence of random classification noise and, more generally, Massart noise.
translated by 谷歌翻译
在随着时间变化的组合环境中的在线决策激励,我们研究了将离线算法转换为其在线对应物的问题。我们专注于使用贪婪算法对局部错误的贪婪算法进行恒定因子近似的离线组合问题。对于此类问题,我们提供了一个通用框架,该框架可有效地将稳健的贪婪算法转换为使用Blackwell的易近算法。我们证明,在完整信息设置下,由此产生的在线算法具有$ O(\ sqrt {t})$(近似)遗憾。我们进一步介绍了Blackwell易接近性的强盗扩展,我们称之为Bandit Blackwell的可接近性。我们利用这一概念将贪婪的稳健离线算法转变为匪(t^{2/3})$(近似)$(近似)的遗憾。展示了我们框架的灵活性,我们将脱机之间的转换应用于收入管理,市场设计和在线优化的几个问题,包括在线平台中的产品排名优化,拍卖中的储备价格优化以及supperular tossodular最大化。 。我们还将还原扩展到连续优化的类似贪婪的一阶方法,例如用于最大化连续强的DR单调下调功能,这些功能受到凸约束的约束。我们表明,当应用于这些应用程序时,我们的转型会导致新的后悔界限或改善当前已知界限。我们通过为我们的两个应用进行数值模拟来补充我们的理论研究,在这两种应用中,我们都观察到,转换的数值性能在实际情况下优于理论保证。
translated by 谷歌翻译
我们研究了在存在$ \ epsilon $ - 对抗异常值的高维稀疏平均值估计的问题。先前的工作为此任务获得了该任务的样本和计算有效算法,用于辅助性Subgaussian分布。在这项工作中,我们开发了第一个有效的算法,用于强大的稀疏平均值估计,而没有对协方差的先验知识。对于$ \ Mathbb r^d $上的分布,带有“认证有限”的$ t $ tum-矩和足够轻的尾巴,我们的算法达到了$ o(\ epsilon^{1-1/t})$带有样品复杂性$的错误(\ epsilon^{1-1/t}) m =(k \ log(d))^{o(t)}/\ epsilon^{2-2/t} $。对于高斯分布的特殊情况,我们的算法达到了$ \ tilde o(\ epsilon)$的接近最佳错误,带有样品复杂性$ m = o(k^4 \ mathrm {polylog}(d)(d))/\ epsilon^^ 2 $。我们的算法遵循基于方形的总和,对算法方法的证明。我们通过统计查询和低度多项式测试的下限来补充上限,提供了证据,表明我们算法实现的样本时间 - 错误权衡在质量上是最好的。
translated by 谷歌翻译
我们研究了清单可解放的平均估计问题,而对手可能会破坏大多数数据集。具体来说,我们在$ \ mathbb {r} ^ $和参数$ 0 <\ alpha <\ frac 1 2 $中给出了一个$ $ n $ points的$ t $ points。$ \ alpha $ -flaction的点$ t $是iid来自乖巧的分发$ \ Mathcal {D} $的样本,剩余的$(1- \ alpha)$ - 分数是任意的。目标是输出小型的vectors列表,其中至少一个接近$ \ mathcal {d} $的均值。我们开发新的算法,用于列出可解码的平均值估计,实现几乎最佳的统计保证,运行时间$ O(n ^ {1 + \ epsilon_0} d)$,适用于任何固定$ \ epsilon_0> 0 $。所有先前的此问题算法都有额外的多项式因素在$ \ frac 1 \ alpha $。我们与额外技术一起利用此结果,以获得用于聚类混合物的第一个近几个线性时间算法,用于分开的良好表现良好的分布,几乎匹配谱方法的统计保证。先前的聚类算法本身依赖于$ k $ -pca的应用程序,从而产生$ \ omega(n d k)$的运行时。这标志着近二十年来这个基本统计问题的第一次运行时间改进。我们的方法的起点是基于单次矩阵乘法权重激发电位减少的$ \ Alpha \至1 $制度中的新颖和更简单的近线性时间较强的估计算法。在Diakonikolas等人的迭代多滤波技术的背景下,我们迫切地利用了这种新的算法框架。 '18,'20,提供一种使用一维投影的同时群集和下群点的方法 - 因此,绕过先前算法所需的$ k $ -pca子程序。
translated by 谷歌翻译
我们考虑在线线性优化问题,在每个步骤中,算法在单位球中播放点x_t $,损失$ \ langle c_t,x_t \ rangle $,x_t \ rangle $ for for some成本向量$ c_t $那么透露算法。最近的工作表明,如果算法接收到与$ C_T $之前的invial相关的提示$ h_t $,则它可以达到$ o(\ log t)$的遗憾保证,从而改善标准设置中$ \ theta(\ sqrt {t})$。在这项工作中,我们研究了算法是否真正需要在每次步骤中需要提示的问题。有些令人惊讶的是,我们表明,只需在自然查询模型下只需在$ O(\ SQRT {T})$暗示即可获得$ O(\ log t)$后悔;相比之下,我们还显示$ o(\ sqrt {t})$提示不能优于$ \ omega(\ sqrt {t})$后悔。我们为我们的结果提供了两种应用,以乐观的遗憾界限和弃权问题的乐观遗憾。
translated by 谷歌翻译
我们研究Stackelberg游戏,其中一位校长反复与长寿,非洋流代理商进行互动,而不知道代理商的回报功能。尽管当代理商是近视,非侧心代理会带来额外的并发症时,在Stackelberg游戏中的学习是充分理解的。尤其是,非洋流代理可以从战略上选择当前劣等的行动,以误导校长的学习算法并在未来获得更好的结果。我们提供了一个通用框架,该框架可在存在近视剂的情况下降低非洋白酶的学习来优化强大的匪徒。通过设计和分析微型反应性匪徒算法,我们的还原从校长学习算法的统计效率中进行了差异,以与其在诱导接近最佳的响应中的有效性。我们将此框架应用于Stackelberg Security Games(SSG),需求曲线,战略分类和一般有限的Stackelberg游戏的价格。在每种情况下,我们都表征了近最佳响应中存在的错误的类型和影响,并为此类拼写错误开发了一种鲁棒性的学习算法。在此过程中,我们通过最先进的$ O(n^3)$从SSGS中提高了SSG中的学习复杂性,从通过发现此类游戏的基本结构属性。该结果除了对非洋流药物学习之外,还具有独立的兴趣。
translated by 谷歌翻译
我们研究了利润率的二元和多类分类器的精确积极学习。给定一个$ n $ - 点集$ x \ subset \ mathbb {r}^m $,我们想在$ x $上学习任何未知分类器,其类具有有限的strong convex hull保证金,这是一个扩展SVM保证金的新概念。在标准的主动学习环境中,只有标签查询,在最坏的情况下学习具有强凸额的分类器$ \ gamma $需要$ \ omega \ big(1+ \ frac {1} {\ gamma} {\ gamma} \ big big )^{(M-1)/2} $查询。另一方面,使用更强大的种子查询(一种等价查询的变体),可以通过littlestone's缩小算法在$ o(m \ log n)$ Queries中学习目标分类器;但是,减半在计算上效率低下。在这项工作中,我们表明,通过仔细组合两种类型的查询,可以在时间上学习二进制分类器$ \ operatatorName {poly}(n+m)$,仅使用$ o(m^2 \ log n)$ label查询和$ o \ big(m \ log \ frac {m} {\ gamma} \ big)$ seed queries;结果以$ k!k^2 $乘法开销的价格扩展到$ k $ class分类器。当输入点具有界限的位复杂性时,或者仅一个类具有强凸壳边缘时,相似的结果就成立了。我们通过证明在最坏的情况下任何算法需要$ \ omega \ big(k m \ log \ frac {1} {\ gamma} \ big)$ seed $ seed和标签质量质量来学习$ k $ -Class classifier具有强大的凸壳保证金$ \ gamma $。
translated by 谷歌翻译
K-MEDIAN和K-MEACE是聚类算法的两个最受欢迎的目标。尽管有密集的努力,但对这些目标的近似性很好地了解,特别是在$ \ ell_p $ -metrics中,仍然是一个重大的开放问题。在本文中,我们在$ \ ell_p $ -metrics中显着提高了文献中已知的近似因素的硬度。我们介绍了一个名为Johnson覆盖假说(JCH)的新假设,这大致断言设定系统上的良好的Max K-Coverage问题难以近似于1-1 / e,即使是成员图形设置系统是Johnson图的子图。然后,我们展示了Cohen-Addad和Karthik引入的嵌入技术的概括(Focs'19),JCH意味着K-MEDIAN和K-MERION在$ \ ell_p $ -metrics中的近似结果的近似值的硬度为近距离对于一般指标获得的人。特别地,假设JCH我们表明很难近似K-Meator目标:$ \ Bullet $离散情况:$ \ ell_1 $ 3.94 - $ \ ell_2中的1.73因素为1.73倍$$ - 这分别在UGC下获得了1.56和1.17的先前因子。 $ \ bullet $持续案例:$ \ ell_1 $ 2210 - $ \ ell_2 $的$ \ ell_1 $ 210。$ \ ell_2 $-metric;这在UGC下获得的$ \ ell_2 $的$ \ ell_2 $的先前因子提高了1.07。对于K-Median目标,我们还获得了类似的改进。此外,我们使用Dinure等人的工作证明了JCH的弱版本。 (Sicomp'05)在超图顶点封面上,恢复Cohen-Addad和Karthik(Focs'19 Focs'19)上面的所有结果(近)相同的不可识别因素,但现在在标准的NP $ \ NEQ $ P假设下(代替UGC)。
translated by 谷歌翻译
我们考虑在线无替代环境中的$ k $ - emeans集群,其中一个人必须在流媒体传输时立即拍摄每个数据点$ x_t $ x_t $。我们的作品专注于\ emph {任意订单}假设没有限制点数$ x $如何订购或生成。与最佳聚类成本相比,在其近似值中评估该设置中的算法,它们选择的中心数及其内存使用率。最近,Bhattacharjee和Moshkovitz(2020)定义了一个参数,$ lower _ {\ alpha,k}(x)$,它控制最小的中心数量的任何$ \ alpha $-xpruckatimation聚类算法,必须给予任何金额输入$ x $。为了补充结果,我们提供了第一个算法,它需要$ \ tilde {o}(下_ {\ alpha,k}(x))$中心(k,log n $)同时实现恒定近似除了保存中心所需的内存之外,还使用$ \ tilde {o}(k)$内存。我们的算法显示它在无替代设置中,可以在使用很少的额外内存时占用订单 - 最佳中心。
translated by 谷歌翻译
Arthur和Vassilvitskii的著名$ K $ -MEANS ++算法[SODA 2007]是解决实践中$ K $ - 英镑问题的最流行方式。该算法非常简单:它以随机的方式均匀地对第一个中心进行采样,然后始终将每个$ K-1 $中心的中心取样与迄今为止最接近最接近中心的平方距离成比例。之后,运行了劳埃德的迭代算法。已知$ k $ -Means ++算法可以返回预期的$ \ theta(\ log K)$近似解决方案。在他们的开创性工作中,Arthur和Vassilvitskii [Soda 2007]询问了其以下\ emph {greedy}的保证:在每一步中,我们采样了$ \ ell $候选中心,而不是一个,然后选择最小化新的中心成本。这也是$ k $ -Means ++在例如中实现的方式。流行的Scikit-Learn库[Pedregosa等人; JMLR 2011]。我们为贪婪的$ k $ -Means ++提供几乎匹配的下限和上限:我们证明它是$ o(\ ell^3 \ log^3 k)$ - 近似算法。另一方面,我们证明了$ \ omega的下限(\ ell^3 \ log^3 k / \ log^2(\ ell \ log k))$。以前,只有$ \ omega(\ ell \ log k)$下限是已知的[bhattacharya,eube,r \“ ogllin,schmidt; esa 2020),并且没有已知的上限。
translated by 谷歌翻译
对对抗性示例强大的学习分类器已经获得了最近的关注。标准强大学习框架的主要缺点是人为强大的RADIUS $ R $,适用于所有输入。这忽略了数据可能是高度异构的事实,在这种情况下,它是合理的,在某些数据区域中,鲁棒性区域应该更大,并且在其他区域中更小。在本文中,我们通过提出名为邻域最佳分类器的新限制分类器来解决此限制,该分类通过使用最接近的支持点的标签扩展其支持之外的贝叶斯最佳分类器。然后,我们认为该分类器可能会使其稳健性区域的大小最大化,但受到等于贝叶斯的准确性的约束。然后,我们存在足够的条件,该条件下可以表示为重量函数的一般非参数方法会聚在此限制,并且显示最近的邻居和内核分类器在某些条件下满足它们。
translated by 谷歌翻译