深度学习方法论为高光谱图像(HSI)分析社区的发展做出了很大贡献。但是,这也使HSI分析系统容易受到对抗攻击的影响。为此,我们在本文中提出了一个掩盖的空间光谱自动编码器(MSSA),根据自我监督的学习理论,以增强HSI分析系统的鲁棒性。首先,进行了一个掩盖的序列注意学习模块,以促进沿光谱通道的HSI分析系统的固有鲁棒性。然后,我们开发了一个具有可学习的图形结构的图形卷积网络,以建立全局像素的组合。这样,每种组合中的所有相关像素都可以分散攻击效果,并且在空间方面可以实现更好的防御性能。最后,为了提高防御能力并解决有限标记样品的问题,MSSA采用光谱重建作为借口任务,并以自我监督的方式适合数据集。 - 高光谱分类方法和代表性的对抗防御策略。
translated by 谷歌翻译
高光谱(HS)图像的特征在于近似连续的频谱信息,通过捕获微妙的光谱差异来实现材料的精细识别。由于它们出色的局部上下文建模能力,已被证明是HS Image分类中的强大特征提取器的卷积神经网络(CNNS)。但是,由于其固有的网络骨干的限制,CNNS无法挖掘并表示频谱签名的序列属性。为了解决这个问题,我们从与变换器的顺序透视重新考虑HS图像分类,并提出一个名为\ ul {spectralformer}的新型骨干网。除了经典变压器中的带明智的表示之外,Spectralformer能够从HS图像的相邻频带中学习频谱局部序列信息,产生群体方向谱嵌入。更重要的是,为了减少在层面传播过程中丢失有价值信息的可能性,我们通过自适应地学习跨层熔断“软”残留物来传达横向跳过连接以传送从浅层到深层的存储器样组件。值得注意的是,所提出的光谱变压器是一个高度灵活的骨干网络,可以适用于像素和修补程序的输入。我们通过进行广泛的实验评估三个HS数据集上提出的光谱变压器的分类性能,显示了经典变压器的优越性,与最先进的骨干网络相比,实现了显着改进。这项工作的代码将在https://github.com/danfenghong/ieee_tgrs_spectralformer下获得,以便再现性。
translated by 谷歌翻译
以前的作品表明,自动扬声器验证(ASV)严重易受恶意欺骗攻击,例如重播,合成语音和最近出现的对抗性攻击。巨大的努力致力于捍卫ANV反击重播和合成语音;但是,只有几种方法探讨了对抗对抗攻击。所有现有的解决ASV对抗性攻击方法都需要对对抗性样本产生的知识,但是防守者知道野外攻击者应用的确切攻击算法是不切实际的。这项工作是第一个在不知道特定攻击算法的情况下对ASV进行对抗性防御。灵感来自自我监督的学习模型(SSLMS),其具有减轻输入中的浅表噪声并重建中断的浅层样本的优点,这项工作至于对噪声的对抗扰动以及SSLMS对ASV的对抗性防御。具体而言,我们建议从两种角度进行对抗性防御:1)对抗扰动纯化和2)对抗扰动检测。实验结果表明,我们的检测模块通过检测对抗性样本的精度约为80%,有效地屏蔽了ASV。此外,由于对ASV的对抗防御性能没有共同的指标,因此考虑到纯化和基于净化的方法,这项工作也将评估指标正式地进行对抗防御。我们真诚地鼓励未来的作品基于拟议的评估框架基于拟议的评估框架来基准。
translated by 谷歌翻译
从消息传递机制中受益,图形神经网络(GNN)在图形数据上的繁荣任务上已经成功。但是,最近的研究表明,攻击者可以通过恶意修改图形结构来灾难性地降低GNN的性能。解决此问题的直接解决方案是通过在两个末端节点的成对表示之间学习度量函数来建模边缘权重,该指标函数试图将低权重分配给对抗边缘。现有方法使用监督GNN学到的原始功能或表示形式来对边缘重量进行建模。但是,两种策略都面临着一些直接问题:原始特征不能代表节点的各种特性(例如结构信息),而受监督的GNN学到的表示可能会遭受分类器在中毒图上的差异性能。我们需要携带特征信息和尽可能糊状的结构信息并且对结构扰动不敏感的表示形式。为此,我们提出了一条名为stable的无监督管道,以优化图形结构。最后,我们将精心设计的图输入到下游分类器中。对于这一部分,我们设计了一个高级GCN,可显着增强香草GCN的鲁棒性,而不会增加时间复杂性。在四个现实世界图基准上进行的广泛实验表明,稳定的表现优于最先进的方法,并成功防御各种攻击。
translated by 谷歌翻译
光谱超分辨率(SSR)是指从RGB对应物中恢复的高光谱图像(HSI)。由于SSR问题的一对多性,可以将单个RGB图像恢复到许多HSIS。解决这个暗示问题的关键是插入多源以前的信息,如自然RGB空间上下文的上下文,深度特征或固有的HSI统计事先等,以提高重建的置信度和保真度光谱。然而,大多数目前的方法只考虑设计定制的卷积神经网络(CNN)的一般和有限的前瞻,这导致无法有效地减轻不良程度。为解决有问题的问题,我们为SSR提出了一个新颖的全面的先前嵌入关系网络(HPRN)。基本上,核心框架由几个多剩余关系块(MRB)进行多种组装,其完全便于RGB信号之前的低频内容的传输和利用。创新性地,引入了RGB输入的语义之前,以识别类别属性,并且向前提出了语义驱动的空间关系模块(SSRM)以使用语义嵌入关系矩阵在聚类的类似特征之间执行特征聚合。此外,我们开发了一种基于变换器的通道关系模块(TCRM),其习惯使用标量作为先前深度特征中的频道方面关系的描述符,并用某些向量替换为变换器特征交互,支持表示更加歧视。为了保持高光谱频带之间的数学相关和光谱一致性,将二阶的先前约束(SOPC)结合到丢失功能中以引导HSI重建过程。
translated by 谷歌翻译
随着各种3D安全关键应用的关注,点云学习模型已被证明容易受到对抗性攻击的影响。尽管现有的3D攻击方法达到了很高的成功率,但它们会以明显的扰动来深入研究数据空间,这可能会忽略几何特征。取而代之的是,我们从新的角度提出了点云攻击 - 图谱域攻击,旨在在光谱域中扰动图形转换系数,该系数对应于改变某些几何结构。具体而言,利用图形信号处理,我们首先通过图形傅立叶变换(GFT)自适应地将点的坐标转换为光谱域,以进行紧凑的表示。然后,我们基于我们建议通过可学习的图形光谱滤波器扰动GFT系数的几何结构的影响。考虑到低频组件主要有助于3D对象的粗糙形状,我们进一步引入了低频约束,以限制不察觉到的高频组件中的扰动。最后,通过将扰动的光谱表示形式转换回数据域,从而生成对抗点云。实验结果证明了拟议攻击的有效性,这些攻击既有易经性和攻击成功率。
translated by 谷歌翻译
现有的深度嵌入聚类工作仅考虑最深层的学习功能嵌入,因此未能利用来自群集分配的可用辨别信息,从而产生性能限制。为此,我们提出了一种新颖的方法,即深入关注引导的图形聚类与双自我监督(DAGC)。具体地,DAGC首先利用异质性 - 方向融合模块,以便于在每个层中自适应地集成自动编码器的特征和图形卷积网络,然后使用尺度明智的融合模块动态地连接不同层中的多尺度特征。这种模块能够通过基于注意的机制学习歧视特征。此外,我们设计了一种分配明智的融合模块,它利用群集分配直接获取聚类结果。为了更好地探索集群分配的歧视信息,我们开发了一种双重自我监督解决方案,包括软自我监督策略,具有三联kullback-Leibler发散损失和具有伪监督损失的硬自我监督策略。广泛的实验验证了我们的方法在六个基准数据集中始终如一地优于最先进的方法。特别是,我们的方法通过最佳基线超过18.14%的方法将ARI提高。
translated by 谷歌翻译
归因图群集是图形分析字段中最重要的任务之一,其目的是将具有相似表示的节点分组到没有手动指导的情况下。基于图形对比度学习的最新研究在处理图形结构数据方面取得了令人印象深刻的结果。但是,现有的基于图形学习的方法1)不要直接解决聚类任务,因为表示和聚类过程是分开的; 2)过多地取决于图数据扩展,这极大地限制了对比度学习的能力; 3)忽略子空间聚类的对比度消息。为了适应上述问题,我们提出了一个通用框架,称为双重对比归因于图形聚类网络(DCAGC)。在DCAGC中,通过利用邻里对比模块,将最大化邻居节点的相似性,并提高节点表示的质量。同时,对比度自我表达模块是通过在自我表达层重建之前和之后最小化节点表示形式来构建的,以获得用于光谱群集的区分性自我表达矩阵。 DCAGC的所有模块均在统一框架中训练和优化,因此学习的节点表示包含面向群集的消息。与16种最先进的聚类方法相比,四个属性图数据集的大量实验结果显示了DCAGC的优势。本文的代码可在https://github.com/wangtong627/dual-contrastive-attributed-graph-cluster-clustering-network上获得。
translated by 谷歌翻译
基于深的神经网络(DNNS)基于合成孔径雷达(SAR)自动靶标识别(ATR)系统已显示出非常容易受到故意设计但几乎无法察觉的对抗扰动的影响,但是当添加到靶向物体中时,DNN推断可能会偏差。在将DNN应用于高级SAR ATR应用时,这会导致严重的安全问题。因此,增强DNN的对抗性鲁棒性对于对现代现实世界中的SAR ATR系统实施DNN至关重要。本文旨在构建更健壮的DNN基于DNN的SAR ATR模型,探讨了SAR成像过程的领域知识,并提出了一种新型的散射模型引导的对抗攻击(SMGAA)算法,该算法可以以电磁散射响应的形式产生对抗性扰动(称为对抗散射器) )。提出的SMGAA由两个部分组成:1)参数散射模型和相应的成像方法以及2)基于自定义的基于梯度的优化算法。首先,我们介绍了有效的归因散射中心模型(ASCM)和一种通用成像方法,以描述SAR成像过程中典型几何结构的散射行为。通过进一步制定几种策略来考虑SAR目标图像的领域知识并放松贪婪的搜索程序,建议的方法不需要经过审慎的态度,但是可以有效地找到有效的ASCM参数来欺骗SAR分类器并促进SAR分类器并促进强大的模型训练。对MSTAR数据集的全面评估表明,SMGAA产生的对抗散射器对SAR处理链中的扰动和转换比当前研究的攻击更为强大,并且有效地构建了针对恶意散射器的防御模型。
translated by 谷歌翻译
在深度学习研究中,自学学习(SSL)引起了极大的关注,引起了计算机视觉和遥感社区的兴趣。尽管计算机视觉取得了很大的成功,但SSL在地球观测领域的大部分潜力仍然锁定。在本文中,我们对在遥感的背景下为计算机视觉的SSL概念和最新发展提供了介绍,并回顾了SSL中的概念和最新发展。此外,我们在流行的遥感数据集上提供了现代SSL算法的初步基准,从而验证了SSL在遥感中的潜力,并提供了有关数据增强的扩展研究。最后,我们确定了SSL未来研究的有希望的方向的地球观察(SSL4EO),以铺平了两个领域的富有成效的相互作用。
translated by 谷歌翻译
表面缺陷检测是确保工业产品质量的极其至关重要的步骤。如今,基于编码器架构的卷积神经网络(CNN)在各种缺陷检测任务中取得了巨大的成功。然而,由于卷积的内在局部性,它们通常在明确建模长距离相互作用时表现出限制,这对于复杂情况下的像素缺陷检测至关重要,例如杂乱的背景和难以辨认的伪缺陷。最近的变压器尤其擅长学习全球图像依赖性,但对于详细的缺陷位置所需的本地结构信息有限。为了克服上述局限性,我们提出了一个有效的混合变压器体系结构,称为缺陷变压器(faft),用于表面缺陷检测,该检测将CNN和Transferaler纳入统一模型,以协作捕获本地和非本地关系。具体而言,在编码器模块中,首先采用卷积茎块来保留更详细的空间信息。然后,贴片聚合块用于生成具有四个层次结构的多尺度表示形式,每个层次结构之后分别是一系列的feft块,该块分别包括用于本地位置编码的本地位置块,一个轻巧的多功能自我自我 - 注意与良好的计算效率建模多尺度的全球上下文关系,以及用于功能转换和进一步位置信息学习的卷积馈送网络。最后,提出了一个简单但有效的解码器模块,以从编码器中的跳过连接中逐渐恢复空间细节。与其他基于CNN的网络相比,三个数据集上的广泛实验证明了我们方法的优势和效率。
translated by 谷歌翻译
图表神经网络(GNNS)已成功利用在许多现实世界应用中的图形分析任务中。攻击和防御方法之间的竞争也增强了GNN的鲁棒性。在这次竞争中,对抗性培训方法的发展提出了对攻击例子的多样性要求。相比之下,大多数具有特定攻击策略的攻击方法难以满足这种要求。为了解决这个问题,我们提出了GraphAtcher,这是一种新型通用图形攻击框架,可根据图分析任务灵活地调整结构和攻击策略。通过在三个关键组件上的替代培训:基于生成对冲网络(GaN)的多策略攻击发生器(MAG),相似性鉴别器(SD)和攻击鉴别器(AD),产生对手示例。此外,考虑到节点相似性分布的变化,我们介绍了一种新颖的相似性修改率SMR来进行隐秘的攻击。在各种基准数据集上的实验表明,GraphAtcker可以在节点分类,图形分类和链路预测的图形分析任务上实现最先进的攻击性能,无论是否进行了对抗性培训。此外,我们还分析了每个任务的独特特征及其在统一攻击框架中的特定响应。项目代码可在https://github.com/honoluluuuu/graphatter处获得。
translated by 谷歌翻译
基于深度学习的面部识别模型容易受到对抗攻击的影响。为了遏制这些攻击,大多数防御方法旨在提高对抗性扰动的识别模型的鲁棒性。但是,这些方法的概括能力非常有限。实际上,它们仍然容易受到看不见的对抗攻击。深度学习模型对于一般的扰动(例如高斯噪音)相当强大。一种直接的方法是使对抗性扰动失活,以便可以轻松地将它们作为一般扰动处理。在本文中,提出了一种称为扰动失活(PIN)的插件对抗防御方法,以使对抗防御的对抗性扰动灭活。我们发现,不同子空间中的扰动对识别模型有不同的影响。应该有一个称为免疫空间的子空间,其中扰动对识别模型的不利影响要比其他子空间更少。因此,我们的方法估计了免疫空间,并通过将它们限制在此子空间中来使对抗性扰动失活。可以将所提出的方法推广到看不见的对抗扰动,因为它不依赖于特定类型的对抗攻击方法。这种方法不仅优于几种最先进的对抗防御方法,而且还通过详尽的实验证明了卓越的概括能力。此外,提出的方法可以成功地应用于四个商业API,而无需额外的培训,这表明可以轻松地将其推广到现有的面部识别系统。源代码可从https://github.com/renmin1991/perturbation in-inactivate获得
translated by 谷歌翻译
深度学习(DL)在许多与人类相关的任务中表现出巨大的成功,这导致其在许多计算机视觉的基础应用中采用,例如安全监控系统,自治车辆和医疗保健。一旦他们拥有能力克服安全关键挑战,这种安全关键型应用程序必须绘制他们的成功部署之路。在这些挑战中,防止或/和检测对抗性实例(AES)。对手可以仔细制作小型,通常是难以察觉的,称为扰动的噪声被添加到清洁图像中以产生AE。 AE的目的是愚弄DL模型,使其成为DL应用的潜在风险。在文献中提出了许多测试时间逃避攻击和对策,即防御或检测方法。此外,还发布了很少的评论和调查,理论上展示了威胁的分类和对策方法,几乎​​没有焦点检测方法。在本文中,我们专注于图像分类任务,并试图为神经网络分类器进行测试时间逃避攻击检测方法的调查。对此类方法的详细讨论提供了在四个数据集的不同场景下的八个最先进的探测器的实验结果。我们还为这一研究方向提供了潜在的挑战和未来的观点。
translated by 谷歌翻译
基于无人机(UAV)基于无人机的视觉对象跟踪已实现了广泛的应用,并且由于其多功能性和有效性而引起了智能运输系统领域的越来越多的关注。作为深度学习革命性趋势的新兴力量,暹罗网络在基于无人机的对象跟踪中闪耀,其准确性,稳健性和速度有希望的平衡。由于开发了嵌入式处理器和深度神经网络的逐步优化,暹罗跟踪器获得了广泛的研究并实现了与无人机的初步组合。但是,由于无人机在板载计算资源和复杂的现实情况下,暹罗网络的空中跟踪仍然在许多方面都面临严重的障碍。为了进一步探索基于无人机的跟踪中暹罗网络的部署,这项工作对前沿暹罗跟踪器进行了全面的审查,以及使用典型的无人机板载处理器进行评估的详尽无人用分析。然后,进行板载测试以验证代表性暹罗跟踪器在现实世界无人机部署中的可行性和功效。此外,为了更好地促进跟踪社区的发展,这项工作分析了现有的暹罗跟踪器的局限性,并进行了以低弹片评估表示的其他实验。最后,深入讨论了基于无人机的智能运输系统的暹罗跟踪的前景。领先的暹罗跟踪器的统一框架,即代码库及其实验评估的结果,请访问https://github.com/vision4robotics/siamesetracking4uav。
translated by 谷歌翻译
尽管语义通信对大量任务表现出令人满意的性能,但语义噪声和系统的鲁棒性的影响尚未得到很好的研究。语义噪声是指预期的语义符号和接收到的语义符号之间的误导性,从而导致任务失败。在本文中,我们首先提出了一个框架,用于稳健的端到端语义通信系统来对抗语义噪声。特别是,我们分析了样品依赖性和样本无关的语义噪声。为了打击语义噪声,开发了具有重量扰动的对抗训练,以在训练数据集中纳入带有语义噪声的样品。然后,我们建议掩盖一部分输入,在该输入中,语义噪声经常出现,并通过噪声相关的掩蔽策略设计蒙版vector量化量化的量化自动编码器(VQ-VAE)。我们使用发射器共享的离​​散代码簿和接收器用于编码功能表示。为了进一步提高系统鲁棒性,我们开发了一个功能重要性模块(FIM),以抑制与噪声相关和任务无关的功能。因此,发射器只需要在代码簿中传输这些重要的任务相关功能的索引即可。仿真结果表明,所提出的方法可以应用于许多下游任务,并显着提高针对语义噪声的鲁棒性,并显着减少了传输开销。
translated by 谷歌翻译
Data augmentation is a widely used technique for enhancing the generalization ability of convolutional neural networks (CNNs) in image classification tasks. Occlusion is a critical factor that affects on the generalization ability of image classification models. In order to generate new samples, existing data augmentation methods based on information deletion simulate occluded samples by randomly removing some areas in the images. However, those methods cannot delete areas of the images according to their structural features of the images. To solve those problems, we propose a novel data augmentation method, AdvMask, for image classification tasks. Instead of randomly removing areas in the images, AdvMask obtains the key points that have the greatest influence on the classification results via an end-to-end sparse adversarial attack module. Therefore, we can find the most sensitive points of the classification results without considering the diversity of various image appearance and shapes of the object of interest. In addition, a data augmentation module is employed to generate structured masks based on the key points, thus forcing the CNN classification models to seek other relevant content when the most discriminative content is hidden. AdvMask can effectively improve the performance of classification models in the testing process. The experimental results on various datasets and CNN models verify that the proposed method outperforms other previous data augmentation methods in image classification tasks.
translated by 谷歌翻译
The authors thank Nicholas Carlini (UC Berkeley) and Dimitris Tsipras (MIT) for feedback to improve the survey quality. We also acknowledge X. Huang (Uni. Liverpool), K. R. Reddy (IISC), E. Valle (UNICAMP), Y. Yoo (CLAIR) and others for providing pointers to make the survey more comprehensive.
translated by 谷歌翻译
卷积神经网络(CNNS)成功地进行了压缩图像感测。然而,由于局部性和重量共享的归纳偏差,卷积操作证明了建模远程依赖性的内在限制。变压器,最初作为序列到序列模型设计,在捕获由于基于自我关注的架构而捕获的全局背景中,即使它可以配备有限的本地化能力。本文提出了一种混合框架,一个混合框架,其集成了从CNN提供的借用的优点以及变压器提供的全局上下文,以获得增强的表示学习。所提出的方法是由自适应采样和恢复组成的端到端压缩图像感测方法。在采样模块中,通过学习的采样矩阵测量图像逐块。在重建阶段,将测量投射到双杆中。一个是用于通过卷积建模邻域关系的CNN杆,另一个是用于采用全球自我关注机制的变压器杆。双分支结构是并发,并且本地特征和全局表示在不同的分辨率下融合,以最大化功能的互补性。此外,我们探索一个渐进的战略和基于窗口的变压器块,以降低参数和计算复杂性。实验结果表明了基于专用变压器的架构进行压缩感测的有效性,与不同数据集的最先进方法相比,实现了卓越的性能。
translated by 谷歌翻译
Deep learning methods have gained increased attention in various applications due to their outstanding performance. For exploring how this high performance relates to the proper use of data artifacts and the accurate problem formulation of a given task, interpretation models have become a crucial component in developing deep learning-based systems. Interpretation models enable the understanding of the inner workings of deep learning models and offer a sense of security in detecting the misuse of artifacts in the input data. Similar to prediction models, interpretation models are also susceptible to adversarial inputs. This work introduces two attacks, AdvEdge and AdvEdge$^{+}$, that deceive both the target deep learning model and the coupled interpretation model. We assess the effectiveness of proposed attacks against two deep learning model architectures coupled with four interpretation models that represent different categories of interpretation models. Our experiments include the attack implementation using various attack frameworks. We also explore the potential countermeasures against such attacks. Our analysis shows the effectiveness of our attacks in terms of deceiving the deep learning models and their interpreters, and highlights insights to improve and circumvent the attacks.
translated by 谷歌翻译