Diffusion probabilistic model (DPM) recently becomes one of the hottest topic in computer vision. Its image generation application such as Imagen, Latent Diffusion Models and Stable Diffusion have shown impressive generation capabilities, which aroused extensive discussion in the community. Many recent studies also found it useful in many other vision tasks, like image deblurring, super-resolution and anomaly detection. Inspired by the success of DPM, we propose the first DPM based model toward general medical image segmentation tasks, which we named MedSegDiff. In order to enhance the step-wise regional attention in DPM for the medical image segmentation, we propose dynamic conditional encoding, which establishes the state-adaptive conditions for each sampling step. We further propose Feature Frequency Parser (FF-Parser), to eliminate the negative effect of high-frequency noise component in this process. We verify MedSegDiff on three medical segmentation tasks with different image modalities, which are optic cup segmentation over fundus images, brain tumor segmentation over MRI images and thyroid nodule segmentation over ultrasound images. The experimental results show that MedSegDiff outperforms state-of-the-art (SOTA) methods with considerable performance gap, indicating the generalization and effectiveness of the proposed model.
translated by 谷歌翻译
在医学图像上,许多组织/病变可能模棱两可。这就是为什么一群临床专家通常会注释医疗细分以减轻个人偏见的原因。但是,这种临床常规也为机器学习算法的应用带来了新的挑战。如果没有确定的基础真相,将很难训练和评估深度学习模型。当从不同的级别收集注释时,一个共同的选择是多数票。然而,这样的策略忽略了分级专家之间的差异。在本文中,我们考虑使用校准的观察者间的不确定性来预测分割的任务。我们注意到,在临床实践中,医学图像分割通常用于帮助疾病诊断。受到这一观察的启发,我们提出了诊断优先的原则,该原则是将疾病诊断作为校准观察者间分段不确定性的标准。遵循这个想法,提出了一个名为诊断的诊断框架(DIFF)以估算从原始图像中进行诊断,从原始图像进行诊断。特别是,DIFF将首先学会融合多论者分段标签,以最大程度地提高单个地面真相疾病诊断表现。我们将融合的地面真相称为诊断第一基地真实(DF-GT)。我们验证了DIFF对三个不同的医学分割任务的有效性:对眼底图像的OD/OC分割,超声图像上的甲状腺结节分割以及皮肤镜图像上的皮肤病变分割。实验结果表明,拟议的DIFF能够显着促进相应的疾病诊断,这表现优于先前的最先进的多评论者学习方法。
translated by 谷歌翻译
精确可靠地分割医学图像对于疾病诊断和治疗是重要的。由于各种各样的物体尺寸,形状和扫​​描方式,这是一个具有挑战性的任务。最近,许多卷积神经网络(CNN)设计用于分割任务,取得了巨大的成功。然而,很少有研究完全考虑了物体的大小,因此大多数表现出对小物体分割的分割的性能不佳。这对早期检测疾病产生重大影响。本文提出了一种上下文轴向储备注意网络(Caranet),与最近最先进的模型相比,在小对象上提高小物体的分割性能。我们在脑肿瘤(Brats 2018)和息肉(Kvasir-Seg,CVC-Colondb,CVC-ClinicDB,CVC-300和ETIS-LaribpolypdB)进行测试。我们的加麻不仅达到了顶级的骰子分割精度,而且还显示出小医疗物体的分割的明显优势。
translated by 谷歌翻译
In medical image segmentation, it is often necessary to collect opinions from multiple experts to make the final decision. This clinical routine helps to mitigate individual bias. But when data is multiply annotated, standard deep learning models are often not applicable. In this paper, we propose a novel neural network framework, called Multi-Rater Prism (MrPrism) to learn the medical image segmentation from multiple labels. Inspired by the iterative half-quadratic optimization, the proposed MrPrism will combine the multi-rater confidences assignment task and calibrated segmentation task in a recurrent manner. In this recurrent process, MrPrism can learn inter-observer variability taking into account the image semantic properties, and finally converges to a self-calibrated segmentation result reflecting the inter-observer agreement. Specifically, we propose Converging Prism (ConP) and Diverging Prism (DivP) to process the two tasks iteratively. ConP learns calibrated segmentation based on the multi-rater confidence maps estimated by DivP. DivP generates multi-rater confidence maps based on the segmentation masks estimated by ConP. The experimental results show that by recurrently running ConP and DivP, the two tasks can achieve mutual improvement. The final converged segmentation result of MrPrism outperforms state-of-the-art (SOTA) strategies on a wide range of medical image segmentation tasks.
translated by 谷歌翻译
计算机辅助医学图像分割已广泛应用于诊断和治疗,以获得靶器官和组织的形状和体积的临床有用信息。在过去的几年中,基于卷积神经网络(CNN)的方法(例如,U-Net)占主导地位,但仍遭受了不足的远程信息捕获。因此,最近的工作提出了用于医学图像分割任务的计算机视觉变压器变体,并获得了有希望的表现。这种变压器通过计算配对贴片关系来模拟远程依赖性。然而,它们促进了禁止的计算成本,尤其是在3D医学图像(例如,CT和MRI)上。在本文中,我们提出了一种称为扩张变压器的新方法,该方法在本地和全球范围内交替捕获的配对贴片关系进行自我关注。灵感来自扩张卷积核,我们以扩张的方式进行全球自我关注,扩大接收领域而不增加所涉及的斑块,从而降低计算成本。基于这种扩展变压器的设计,我们构造了一个用于3D医学图像分割的U形编码器解码器分层体系结构。 Synapse和ACDC数据集的实验表明,我们的D-Ager Model从头开始培训,以低计算成本从划痕训练,优于各种竞争力的CNN或基于变压器的分段模型,而不耗时的每训练过程。
translated by 谷歌翻译
随着深度学习技术的发展,从底眼图像中提出了越来越多的方法对视盘和杯子(OD/OC)进行分割。在临床上,多位临床专家通常会注释OD/OC细分以减轻个人偏见。但是,很难在多个标签上训练自动化的深度学习模型。解决该问题的一种普遍做法是多数投票,例如,采用多个标签的平均值。但是,这种策略忽略了医学专家的不同专家。通过观察到的观察,即在临床上通常将OD/OC分割用于青光眼诊断,在本文中,我们提出了一种新的策略,以通过青光眼诊断性能融合多评分者OD/OC分割标签。具体而言,我们通过细心的青光眼诊断网络评估每个评估者的专业性。对于每个评估者,其对诊断的贡献将被反映为专家图。为了确保对不同青光眼诊断模型的专家图是一般性的,我们进一步提出了专家生成器(EXPG),以消除优化过程中的高频组件。基于获得的专家图,多评价者标签可以融合为单个地面真相,我们将其称为诊断第一基地真相(diagfirstgt)。实验结果表明,通过将diagfirstgt用作地面真相,OD/OC分割网络将预测具有优质诊断性能的面膜。
translated by 谷歌翻译
卷积神经网络(CNNS)在3D医学图像上自动分割器官或病变取得了显着的成功。最近,视觉变压器网络在2D图像分类任务中表现出卓越的性能。与CNN相比,变压器网络由于其自我关注算法而提取远程特征的吸引力。因此,我们提出了一种称为Bitr-UNET的CNN变压器组合模型,对多模态MRI扫描进行脑肿瘤分割的具体修饰。我们的Bitr-UNET在BRATS2021验证数据集中实现了良好的性能,中值骰子得分0.9335,0.9304和0.8899,以及整个肿瘤,肿瘤核心和增强肿瘤的中位Hausdorff距离2.8284,2.2361和1.4142。在BRATS2021测试数据集上,骰子评分的相应结果为0.9257,0.9350和0.8874,对于Hausdorff距离为3,2.2361和1.4142。该代码在https://github.com/justatinydot/bitr-unet上公开使用。
translated by 谷歌翻译
Transformers have made remarkable progress towards modeling long-range dependencies within the medical image analysis domain. However, current transformer-based models suffer from several disadvantages: (1) existing methods fail to capture the important features of the images due to the naive tokenization scheme; (2) the models suffer from information loss because they only consider single-scale feature representations; and (3) the segmentation label maps generated by the models are not accurate enough without considering rich semantic contexts and anatomical textures. In this work, we present CASTformer, a novel type of adversarial transformers, for 2D medical image segmentation. First, we take advantage of the pyramid structure to construct multi-scale representations and handle multi-scale variations. We then design a novel class-aware transformer module to better learn the discriminative regions of objects with semantic structures. Lastly, we utilize an adversarial training strategy that boosts segmentation accuracy and correspondingly allows a transformer-based discriminator to capture high-level semantically correlated contents and low-level anatomical features. Our experiments demonstrate that CASTformer dramatically outperforms previous state-of-the-art transformer-based approaches on three benchmarks, obtaining 2.54%-5.88% absolute improvements in Dice over previous models. Further qualitative experiments provide a more detailed picture of the model's inner workings, shed light on the challenges in improved transparency, and demonstrate that transfer learning can greatly improve performance and reduce the size of medical image datasets in training, making CASTformer a strong starting point for downstream medical image analysis tasks.
translated by 谷歌翻译
扩散模型对图像的生成建模表现出令人印象深刻的性能。在本文中,我们提出了一种基于扩散模型的新型语义分段方法。通过修改培训和采样方案,我们表明扩散模型可以执行医学图像的病变分割。为了生成图像特定的分割,我们在地面真实分割上培训模型,并在采样过程中使用图像作为先前的图像。通过给定的随机抽样过程,我们可以生成分割面罩的分布。此属性允许我们计算分割的像素方面的不确定性地图,并允许增加分段性能的分段内隐式集合。我们评估我们在Brats2020数据集上进行脑肿瘤细分的方法。与最先进的分割模型相比,我们的方法产生了良好的细分结果,另外,有意义地,有意义的不确定性地图。
translated by 谷歌翻译
MRI图像中的脑肿瘤分析是一个重要而挑战性的问题,因为误诊可能导致死亡。脑肿瘤在早期阶段的诊断和评估增加了成功治疗的概率。然而,肿瘤,形状和位置的复杂性和各种使其分割和分类复合物。在这方面,许多研究人员提出了脑肿瘤细分和分类方法。本文使用含有MRI图像增强和肿瘤区检测的框架,呈现了一种同时分段和分类MRI图像中的脑肿瘤的方法。最终,提出了一种基于多任务学习方法的网络。主观和客观结果表明,基于评估指标的分割和分类结果更好或与最先进的。
translated by 谷歌翻译
肝癌是世界上最常见的恶性疾病之一。 CT图像中肝脏肿瘤和血管的分割和标记可以为肝脏肿瘤诊断和手术干预中的医生提供便利。在过去的几十年中,基于深度学习的自动CT分段方法在医学领域得到了广泛的关注。在此期间出现了许多最先进的分段算法。然而,大多数现有的分割方法只关心局部特征背景,并在医学图像的全局相关性中具有感知缺陷,这显着影响了肝脏肿瘤和血管的分割效果。我们引入了一种基于变压器和SebottLenet的多尺度特征上下文融合网络,称为TransFusionNet。该网络可以准确地检测和识别肝脏容器的兴趣区域的细节,同时它可以通过利用CT图像的全球信息来改善肝肿瘤的形态边缘的识别。实验表明,TransFusionNet优于公共数据集LITS和3DIRCADB以及我们的临床数据集的最先进方法。最后,我们提出了一种基于训练模型的自动三维重建算法。该算法可以在1秒内快速准确地完成重建。
translated by 谷歌翻译
对于3D医学图像(例如CT和MRI)分割,在临床情况下分割每个切片的难度差异很大。先前以逐片方式进行体积医学图像分割的研究通常使用相同的2D深神经网络来细分同一情况的所有切片,从而忽略了图像切片之间的数据异质性。在本文中,我们专注于多模式3D MRI脑肿瘤分割,并根据自适应模型选择提出了一个名为MED-DANET的动态体系结构网络,以实现有效的准确性和效率折衷。对于输入3D MRI量的每个切片,我们提出的方法学习了决策网络的特定于切片的决策,以动态从预定义的模型库中选择合适的模型,以完成后续的2D分割任务。 Brats 2019和2020年数据集的广泛实验结果表明,我们提出的方法比以前的3D MRI脑肿瘤分割的最先进方法获得了可比或更好的结果,模型的复杂性要少得多。与最新的3D方法TransBT相比,提出的框架提高了模型效率高达3.5倍,而无需牺牲准确性。我们的代码将很快公开可用。
translated by 谷歌翻译
卷积神经网络(CNN)的深度学习体系结构在计算机视野领域取得了杰出的成功。 CNN构建的编码器架构U-Net在生物医学图像分割方面取得了重大突破,并且已在各种实用的情况下应用。但是,编码器部分中每个下采样层和简单堆积的卷积的平等设计不允许U-NET从不同深度提取足够的特征信息。医学图像的复杂性日益增加为现有方法带来了新的挑战。在本文中,我们提出了一个更深层,更紧凑的分裂注意U形网络(DCSAU-NET),该网络有效地利用了基于两个新颖框架的低级和高级语义信息:主要功能保护和紧凑的分裂注意力堵塞。我们评估了CVC-ClinicDB,2018 Data Science Bowl,ISIC-2018和SEGPC-2021数据集的建议模型。结果,DCSAU-NET在联合(MIOU)和F1-SOCRE的平均交点方面显示出比其他最先进的方法(SOTA)方法更好的性能。更重要的是,提出的模型在具有挑战性的图像上表现出了出色的细分性能。我们的工作代码以及更多技术细节,请访问https://github.com/xq141839/dcsau-net。
translated by 谷歌翻译
对医学图像的器官或病变的准确分割对于可靠的疾病和器官形态计量学的可靠诊断至关重要。近年来,卷积编码器解码器解决方案在自动医疗图像分割领域取得了重大进展。由于卷积操作中的固有偏见,先前的模型主要集中在相邻像素形成的局部视觉提示上,但无法完全对远程上下文依赖性进行建模。在本文中,我们提出了一个新型的基于变压器的注意力指导网络,称为Transattunet,其中多层引导注意力和多尺度跳过连接旨在共同增强语义分割体系结构的性能。受到变压器的启发,具有变压器自我注意力(TSA)和全球空间注意力(GSA)的自我意识注意(SAA)被纳入Transattunet中,以有效地学习编码器特征之间的非本地相互作用。此外,我们还使用解码器块之间的其他多尺度跳过连接来汇总具有不同语义尺度的上采样功能。这样,多尺度上下文信息的表示能力就可以增强以产生判别特征。从这些互补组件中受益,拟议的Transattunet可以有效地减轻卷积层堆叠和连续采样操作引起的细节损失,最终提高医学图像的细分质量。来自不同成像方式的多个医疗图像分割数据集进行了广泛的实验表明,所提出的方法始终优于最先进的基线。我们的代码和预培训模型可在以下网址找到:https://github.com/yishuliu/transattunet。
translated by 谷歌翻译
伪装的对象检测(COD)旨在检测周围环境的类似模式(例如,纹理,强度,颜色等)的对象,最近吸引了日益增长的研究兴趣。由于伪装对象通常存在非常模糊的边界,如何确定对象位置以及它们的弱边界是具有挑战性的,也是此任务的关键。受到生物视觉感知过程的启发,当人类观察者发现伪装对象时,本文提出了一种名为Errnet的新型边缘的可逆重新校准网络。我们的模型的特点是两种创新设计,即选择性边缘聚集(SEA)和可逆的重新校准单元(RRU),其旨在模拟视觉感知行为,并在潜在的伪装区域和背景之间实现有效的边缘和交叉比较。更重要的是,RRU与现有COD模型相比,具有更全面的信息。实验结果表明,errnet优于三个COD数据集和五个医学图像分割数据集的现有尖端基线。特别是,与现有的Top-1模型SINET相比,ERRNET显着提高了$ \ SIM 6%(平均电子测量)的性能,以显着高速(79.3 FPS),显示ERRNET可能是一般和强大的解决方案COD任务。
translated by 谷歌翻译
深度学习已被广​​泛用于医学图像分割,并且录制了录制了该领域深度学习的成功的大量论文。在本文中,我们使用深层学习技术对医学图像分割的全面主题调查。本文进行了两个原创贡献。首先,与传统调查相比,直接将深度学习的文献分成医学图像分割的文学,并为每组详细介绍了文献,我们根据从粗略到精细的多级结构分类目前流行的文献。其次,本文侧重于监督和弱监督的学习方法,而不包括无监督的方法,因为它们在许多旧调查中引入而且他们目前不受欢迎。对于监督学习方法,我们分析了三个方面的文献:骨干网络的选择,网络块的设计,以及损耗功能的改进。对于虚弱的学习方法,我们根据数据增强,转移学习和交互式分割进行调查文献。与现有调查相比,本调查将文献分类为比例不同,更方便读者了解相关理由,并将引导他们基于深度学习方法思考医学图像分割的适当改进。
translated by 谷歌翻译
自动肿瘤或病变分割是用于计算机辅助诊断的医学图像分析的关键步骤。尽管基于卷积神经网络(CNN)的现有方法已经达到了最先进的表现,但医疗肿瘤分割中仍然存在许多挑战。这是因为,尽管人类视觉系统可以有效地检测到2D图像中的对称性,但常规CNN只能利用翻译不变性,忽略医学图像中存在的进一步固有的对称性,例如旋转和反射。为了解决这个问题,我们通过编码那些固有的对称性来学习更精确的表示形式,提出了一个新型的群体模棱两可的分割框架。首先,在每个方向上都设计了基于内核的模棱两可的操作,这使其能够有效地解决现有方法中学习对称性的差距。然后,为了保持全球分割网络,我们设计具有层面对称性约束的独特组层。最后,基于我们的新框架,对现实世界临床数据进行的广泛实验表明,一个群体含量的res-unet(名为GER-UNET)优于其基于CNN的常规对应物,并且在最新的分段方法中优于其最新的分段方法。肝肿瘤分割,COVID-19肺部感染分割和视网膜血管检测的任务。更重要的是,新建的GER-UNET还显示出在降低样品复杂性和过滤器的冗余,升级当前分割CNN和划定器官上的其他医学成像方式上的潜力。
translated by 谷歌翻译
在医学图像分割任务中,脑肿瘤分割仍然是一个挑战。随着变压器在各种计算机视觉任务中的应用,变压器块显示了在全球空间中学习长距离依赖性的能力,这是与CNN互补的。在本文中,我们提出了一个新型的基于变压器的生成对抗网络,以自动分割具有多模式MRI的脑肿瘤。我们的架构由一个发电机和一个歧视器组成,这些发电机和歧视器接受了最小游戏进度的培训。发电机基于典型的“ U形”编码器架构,其底层由带有Resnet的变压器块组成。此外,发电机还接受了深度监督技术的培训。我们设计的鉴别器是一个基于CNN的网络,具有多尺度$ L_ {1} $损失,事实证明,这对于医学语义图像分割是有效的。为了验证我们方法的有效性,我们对BRATS2015数据集进行了实验,比以前的最新方法实现了可比或更好的性能。
translated by 谷歌翻译
临床上,病变/组织的准确注释可以显着促进疾病诊断。例如,对眼底图像的视盘/杯/杯(OD/OC)的分割将有助于诊断青光眼诊断,皮肤镜图像上皮肤病变的分割有助于黑色素瘤诊断等。随着深度学习技术的发展,广泛的方法证明了病变/组织分割还可以促进自动疾病诊断模型。但是,现有方法是有限的,因为它们只能捕获图像中的静态区域相关性。受视觉变压器的全球和动态性质的启发,在本文中,我们提出了分割辅助诊断变压器(SeaTrans),以将分割知识转移到疾病诊断网络中。具体而言,我们首先提出了一种不对称的多尺度相互作用策略,以将每个单个低级诊断功能与多尺度分割特征相关联。然后,采用了一种称为海块的有效策略,以通过相关的分割特征使诊断特征生命。为了模拟分割诊断的相互作用,海块首先根据分段信息通过编码器嵌入诊断功能,然后通过解码器将嵌入的嵌入回到诊断功能空间中。实验结果表明,关于几种疾病诊断任务的海洋侵蚀超过了广泛的最新(SOTA)分割辅助诊断方法。
translated by 谷歌翻译
本文提出了基于对脑肿瘤细分任务的普遍学习培训方法。在这一概念中,3D分割网络从双互惠对抗性学习方法学习。为了增强分割预测的概括并使分割网络稳健,我们通过在原始患者数据上添加一些噪声来通过增加一些噪声来遵循虚拟的对抗训练方法。通过将其作为定量主观裁判的评论者纳入了批评,分割网络从与分段结果相关的不确定性信息学习。我们在RSNA-ASNR-MICCAI BRATS 2021数据集上培训和评估网络架构。我们在线验证数据集的表现如下:骰子相似度得分为81.38%,90.77%和85.39%; Hausdorff距离(95±95±95毫米)分别为增强肿瘤,全肿瘤和肿瘤核心的5.37毫米,8.56毫米。同样,我们的方法实现了84.55%,90.46%和85.30%的骰子相似度得分,以及最终测试数据集上的13.48 mm,6.32毫米和16.98mm的Hausdorff距离(95 \%)。总体而言,我们所提出的方法对每个肿瘤次区域的分割准确性产生更好的性能。我们的代码实现在https://github.com/himashi92/vizviva_brats_2021上公开使用
translated by 谷歌翻译