安全驾驶需要人类和智能代理的多种功能,例如无法看到环境的普遍性,对周围交通的安全意识以及复杂的多代理设置中的决策。尽管强化学习取得了巨大的成功(RL),但由于缺乏集成的环境,大多数RL研究工作分别研究了每个能力。在这项工作中,我们开发了一个名为MetAdrive的新驾驶模拟平台,以支持对机器自治的可概括增强学习算法的研究。 Metadrive具有高度的组成性,可以从程序生成和实际数据导入的实际数据中产生无限数量的不同驾驶场景。基于Metadrive,我们在单一代理和多代理设置中构建了各种RL任务和基线,包括在看不见的场景,安全探索和学习多机构流量的情况下进行基准标记。对程序生成的场景和现实世界情景进行的概括实验表明,增加训练集的多样性和大小会导致RL代理的推广性提高。我们进一步评估了元数据环境中各种安全的增强学习和多代理增强学习算法,并提供基准。源代码,文档和演示视频可在\ url {https://metadriverse.github.io/metadrive}上获得。
translated by 谷歌翻译
自驱动粒子(SDP)描述了日常生活中常见的一类常见的多种子体系统,例如植绒鸟类和交通流量。在SDP系统中,每个代理商都追求自己的目标,并不断改变其与附近代理商的合作或竞争行为。手动设计用于此类SDP系统的控制器是耗时的,而产生的紧急行为往往是不可逼真的,也不是更广泛的。因此,SDP系统的现实模拟仍然具有挑战性。强化学习提供了一种吸引人的替代方案,用于自动化SDP控制器的开发。然而,以前的多档强化学习(Marl)方法将代理人定义为手头之前的队友或敌人,这未能捕获每个代理的作用的SDP的本质,即使在一个集中也变化或竞争。为了用Marl模拟SDP,一个关键挑战是协调代理的行为,同时仍然最大化个人目标。将交通仿真作为测试床,在这项工作中,我们开发了一种称为协调政策优化(Copo)的新型MARL方法,该方法包括社会心理学原理来学习SDP的神经控制器。实验表明,与各种度量标准的Marl基线相比,该方法可以实现优越的性能。明显的车辆明显地表现出复杂和多样化的社会行为,以提高整个人口的性能和安全性。演示视频和源代码可用于:https://decisionforce.github.io/copo/
translated by 谷歌翻译
强化学习(RL)已证明可以在各种任务中达到超级人类水平的表现。但是,与受监督的机器学习不同,将其推广到各种情况的学习策略仍然是现实世界中最具挑战性的问题之一。自主驾驶(AD)提供了一个多方面的实验领域,因为有必要在许多变化的道路布局和可能的交通情况大量分布中学习正确的行为,包括个人驾驶员个性和难以预测的交通事件。在本文中,我们根据可配置,灵活和性能的代码库为AD提出了一个具有挑战性的基准。我们的基准测试使用了随机场景生成器的目录,包括用于道路布局和交通变化的多种机制,不同的数值和视觉观察类型,不同的动作空间,不同的车辆模型,并允许在静态场景定义下使用。除了纯粹的算法见解外,我们面向应用程序的基准还可以更好地理解设计决策的影响,例如行动和观察空间对政策的普遍性。我们的基准旨在鼓励研究人员提出能够在各种情况下成功概括的解决方案,这是当前RL方法失败的任务。基准的代码可在https://github.com/seawee1/driver-dojo上获得。
translated by 谷歌翻译
High-quality traffic flow generation is the core module in building simulators for autonomous driving. However, the majority of available simulators are incapable of replicating traffic patterns that accurately reflect the various features of real-world data while also simulating human-like reactive responses to the tested autopilot driving strategies. Taking one step forward to addressing such a problem, we propose Realistic Interactive TrAffic flow (RITA) as an integrated component of existing driving simulators to provide high-quality traffic flow for the evaluation and optimization of the tested driving strategies. RITA is developed with fidelity, diversity, and controllability in consideration, and consists of two core modules called RITABackend and RITAKit. RITABackend is built to support vehicle-wise control and provide traffic generation models from real-world datasets, while RITAKit is developed with easy-to-use interfaces for controllable traffic generation via RITABackend. We demonstrate RITA's capacity to create diversified and high-fidelity traffic simulations in several highly interactive highway scenarios. The experimental findings demonstrate that our produced RITA traffic flows meet all three design goals, hence enhancing the completeness of driving strategy evaluation. Moreover, we showcase the possibility for further improvement of baseline strategies through online fine-tuning with RITA traffic flows.
translated by 谷歌翻译
我们介绍了\ textit {nocturne},这是一种新的2D驾驶模拟器,用于调查部分可观察性下的多代理协调。夜曲的重点是在不具有计算机视觉的计算开销并从图像中提取特征的情况下,在现实世界中的推理和心理理论方面进行研究。该模拟器中的代理只会观察到场景的障碍,模仿人类的视觉传感限制。 Unlike existing benchmarks that are bottlenecked by rendering human-like observations directly using a camera input, Nocturne uses efficient intersection methods to compute a vectorized set of visible features in a C++ back-end, allowing the simulator to run at $2000+$ steps-per -第二。使用开源轨迹和映射数据,我们构建了一个模拟器,以加载和重播来自现实世界驾驶数据的任意轨迹和场景。使用这种环境,我们基准了加强学习和模仿学习剂,并证明这些代理远离人类水平的协调能力,并显着偏离专家轨迹。
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
在多机构动态交通情况下的自主驾驶具有挑战性:道路使用者的行为不确定,很难明确建模,并且自我车辆应与他们应用复杂的谈判技巧,例如屈服,合并和交付,以实现,以实现在各种环境中都有安全有效的驾驶。在这些复杂的动态场景中,传统的计划方法主要基于规则,并且通常会导致反应性甚至过于保守的行为。因此,他们需要乏味的人类努力来维持可行性。最近,基于深度学习的方法显示出令人鼓舞的结果,具有更好的概括能力,但手工工程的工作较少。但是,它们要么是通过有监督的模仿学习(IL)来实施的,该学习遭受了数据集偏见和分配不匹配问题,要么接受了深入强化学习(DRL)的培训,但专注于一种特定的交通情况。在这项工作中,我们建议DQ-GAT实现可扩展和主动的自主驾驶,在这些驾驶中,基于图形注意力的网络用于隐式建模相互作用,并采用了深层Q学习来以无聊的方式训练网络端到端的网络。 。在高保真驾驶模拟器中进行的广泛实验表明,我们的方法比以前的基于学习的方法和传统的基于规则的方法获得了更高的成功率,并且在可见和看不见的情况下都可以更好地摆脱安全性和效率。此外,轨迹数据集的定性结果表明,我们所学的政策可以通过实时速度转移到现实世界中。演示视频可在https://caipeide.github.io/dq-gat/上找到。
translated by 谷歌翻译
人类共享的控制允许人类与AI进行互动和协作,以在复杂的环境中完成控制任务。以前的强化学习(RL)方法试图以目标条件的设计来实现可控制的政策,而付出了重新设计奖励功能和培训范式。受到神经科学方法研究灵长类动物皮层的启发,我们开发了一种简单但有效的基于频率的方法,称为\ textit {策略解剖},以使学习神经控制器的中间表示与代理行为的运动属性相结合。在不修改神经控制器或检验模型的情况下,提出的方法可以将给定的RL训练的政策转换为人际关系政策。我们评估了关于自动驾驶和运动的RL任务的建议方法。实验表明,通过政策解剖在驾驶任务中实现的人类共享控制可以大大改善看不见的交通场景的性能和安全性。随着人类的循环,机器人机器人也表现出多功能的可控运动技能,即使他们只接受了前进的训练。我们的结果表明,通过解释自主代理的学习代表来实施人类共享自治的有希望的方向。演示视频和代码将在https://metadriverse.github.io/policydissect上提供。
translated by 谷歌翻译
数据驱动的模拟器承诺高数据效率进行驾驶策略学习。当用于建模相互作用时,这种数据效率变为瓶颈:小型基础数据集通常缺乏用于学习交互式驾驶的有趣和具有挑战性的边缘案例。我们通过提出使用绘制的ADO车辆学习强大的驾驶策略的仿真方法来解决这一挑战。因此,我们的方法可用于学习涉及多代理交互的策略,并允许通过最先进的策略学习方法进行培训。我们评估了驾驶中学习标准交互情景的方法。在广泛的实验中,我们的工作表明,由此产生的政策可以直接转移到全规模的自治车辆,而无需使用任何传统的SIM-to-Real传输技术,例如域随机化。
translated by 谷歌翻译
We introduce CARLA, an open-source simulator for autonomous driving research. CARLA has been developed from the ground up to support development, training, and validation of autonomous urban driving systems. In addition to open-source code and protocols, CARLA provides open digital assets (urban layouts, buildings, vehicles) that were created for this purpose and can be used freely. The simulation platform supports flexible specification of sensor suites and environmental conditions. We use CARLA to study the performance of three approaches to autonomous driving: a classic modular pipeline, an endto-end model trained via imitation learning, and an end-to-end model trained via reinforcement learning. The approaches are evaluated in controlled scenarios of increasing difficulty, and their performance is examined via metrics provided by CARLA, illustrating the platform's utility for autonomous driving research.
translated by 谷歌翻译
在自主驾驶场中,人类知识融合到深增强学习(DRL)通常基于在模拟环境中记录的人类示范。这限制了在现实世界交通中的概率和可行性。我们提出了一种两级DRL方法,从真实的人类驾驶中学习,实现优于纯DRL代理的性能。培训DRL代理商是在Carla的框架内完成了机器人操作系统(ROS)。对于评估,我们设计了不同的真实驾驶场景,可以将提出的两级DRL代理与纯DRL代理进行比较。在从人驾驶员中提取“良好”行为之后,例如在信号交叉口中的预期,该代理变得更有效,并且驱动更安全,这使得这种自主代理更适应人体机器人交互(HRI)流量。
translated by 谷歌翻译
连续空间中有效有效的探索是将加固学习(RL)应用于自主驾驶的核心问题。从专家演示或为特定任务设计的技能可以使探索受益,但是它们通常是昂贵的,不平衡/次优的,或者未能转移到各种任务中。但是,人类驾驶员可以通过在整个技能空间中进行高效和结构性探索而不是具有特定于任务的技能的有限空间来适应各种驾驶任务。受上述事实的启发,我们提出了一种RL算法,以探索所有可行的运动技能,而不是一组有限的特定于任务和以对象为中心的技能。没有演示,我们的方法仍然可以在各种任务中表现出色。首先,我们以纯粹的运动角度构建了一个任务不合时宜的和以自我为中心的(TAEC)运动技能库,该运动技能库是足够多样化的,可以在不同的复杂任务中重复使用。然后,将运动技能编码为低维的潜在技能空间,其中RL可以有效地进行探索。在各种具有挑战性的驾驶场景中的验证表明,我们提出的方法TAEC-RL在学习效率和任务绩效方面的表现显着优于其同行。
translated by 谷歌翻译
如最近的研究所示,支持机器智能的系统容易受到对抗性操纵或自然分配变化产生的测试案例的影响。这引起了人们对现实应用程序部署机器学习算法的极大关注,尤其是在自动驾驶(AD)等安全性领域中。另一方面,由于自然主义场景的传统广告测试需要数亿英里,这是由于现实世界中安全关键方案的高度和稀有性。结果,已经探索了几种自动驾驶评估方法,但是,这些方法通常是基于不同的仿真平台,安全性 - 关键的情况的类型,场景生成算法和驾驶路线变化的方法。因此,尽管在自动驾驶测试方面进行了大量努力,但在相似条件下,比较和了解不同测试场景产生算法和测试机制的有效性和效率仍然是一项挑战。在本文中,我们旨在提供第一个统一的平台Safebench,以整合不同类型的安全性测试方案,场景生成算法以及其他变体,例如驾驶路线和环境。同时,我们实施了4种基于深入学习的AD算法,具有4种类型的输入(例如,鸟类视图,相机,相机),以对SafeBench进行公平的比较。我们发现,我们的生成的测试场景确实更具挑战性,并观察到在良性和关键安全测试方案下的广告代理的性能之间的权衡。我们认为,我们的统一平台安全基地用于大规模和有效的自动驾驶测试,将激发新的测试场景生成和安全AD算法的开发。 SafeBench可从https://safebench.github.io获得。
translated by 谷歌翻译
由于互动交通参与者的随机性质和道路结构的复杂性,城市自动驾驶的决策是具有挑战性的。尽管基于强化的学习(RL)决策计划有望处理城市驾驶方案,但它的样本效率低和适应性差。在本文中,我们提出了Scene-Rep Transformer,以通过更好的场景表示编码和顺序预测潜在蒸馏来提高RL决策能力。具体而言,构建了多阶段变压器(MST)编码器,不仅对自我车辆及其邻居之间的相互作用意识进行建模,而且对代理商及其候选路线之间的意图意识。具有自我监督学习目标的连续潜伏变压器(SLT)用于将未来的预测信息提炼成潜在的场景表示,以减少勘探空间并加快训练的速度。基于软演员批评的最终决策模块(SAC)将来自场景rep变压器的精制潜在场景表示输入,并输出驾驶动作。该框架在五个挑战性的模拟城市场景中得到了验证,其性能通过成功率,安全性和效率方面的数据效率和性能的大幅度提高来定量表现出来。定性结果表明,我们的框架能够提取邻居代理人的意图,以帮助做出决策并提供更多多元化的驾驶行为。
translated by 谷歌翻译
3D视觉输入的对象操纵对构建可宽大的感知和政策模型构成了许多挑战。然而,现有基准中的3D资产主要缺乏与拓扑和几何中的现实世界内复杂的3D形状的多样性。在这里,我们提出了Sapien操纵技能基准(Manishill)以在全物理模拟器中的各种物体上基准操纵技巧。 Manishill中的3D资产包括大型课堂内拓扑和几何变化。仔细选择任务以涵盖不同类型的操纵挑战。 3D Vision的最新进展也使我们认为我们应该定制基准,以便挑战旨在邀请研究3D深入学习的研究人员。为此,我们模拟了一个移动的全景摄像头,返回以自我为中心的点云或RGB-D图像。此外,我们希望Manishill是为一个对操纵研究感兴趣的广泛研究人员提供服务。除了支持从互动的政策学习,我们还支持学习 - 从演示(LFD)方法,通过提供大量的高质量演示(〜36,000个成功的轨迹,总共〜1.5米点云/ RGB-D帧)。我们提供使用3D深度学习和LFD算法的基线。我们的基准(模拟器,环境,SDK和基线)的所有代码都是开放的,并且将基于基准举办跨学科研究人员面临的挑战。
translated by 谷歌翻译
在过去的几十年中,多机构增强学习(MARL)一直在学术界和行业受到广泛关注。 MAL中的基本问题之一是如何全面评估不同的方法。在视频游戏或简单的模拟场景中评估了大多数现有的MAL方法。这些方法在实际情况下,尤其是多机器人系统中的性能仍然未知。本文介绍了一个可扩展的仿真平台,用于多机器人增强学习(MRRL),称为SMART,以满足这一需求。确切地说,智能由两个组成部分组成:1)一个模拟环境,该环境为培训提供了各种复杂的交互场景,以及2)现实世界中的多机器人系统,用于现实的性能评估。此外,SMART提供了代理环境API,这些API是算法实现的插件。为了说明我们平台的实用性,我们就合作驾驶车道变更方案进行了案例研究。在案例研究的基础上,我们总结了MRRL的一些独特挑战,这些挑战很少被考虑。最后,我们为鼓励和增强MRRL研究的仿真环境,相关的基准任务和最先进的基线开放。
translated by 谷歌翻译
自动驾驶在过去二十年中吸引了重要的研究兴趣,因为它提供了许多潜在的好处,包括释放驾驶和减轻交通拥堵的司机等。尽管进展有前途,但车道变化仍然是自治车辆(AV)的巨大挑战,特别是在混合和动态的交通方案中。最近,强化学习(RL)是一种强大的数据驱动控制方法,已被广泛探索了在令人鼓舞的效果中的通道中的车道改变决策。然而,这些研究的大多数研究专注于单车展,并且在多个AVS与人类驱动车辆(HDV)共存的情况下,道路变化已经受到稀缺的关注。在本文中,我们在混合交通公路环境中制定了多个AVS的车道改变决策,作为多功能增强学习(Marl)问题,其中每个AV基于相邻AV的动作使车道变化的决定和HDV。具体地,使用新颖的本地奖励设计和参数共享方案开发了一种多代理优势演员批评网络(MA2C)。特别是,提出了一种多目标奖励功能来纳入燃油效率,驾驶舒适度和自主驾驶的安全性。综合实验结果,在三种不同的交通密度和各级人类司机侵略性下进行,表明我们所提出的Marl框架在效率,安全和驾驶员舒适方面始终如一地优于几个最先进的基准。
translated by 谷歌翻译
Proper functioning of connected and automated vehicles (CAVs) is crucial for the safety and efficiency of future intelligent transport systems. Meanwhile, transitioning to fully autonomous driving requires a long period of mixed autonomy traffic, including both CAVs and human-driven vehicles. Thus, collaboration decision-making for CAVs is essential to generate appropriate driving behaviors to enhance the safety and efficiency of mixed autonomy traffic. In recent years, deep reinforcement learning (DRL) has been widely used in solving decision-making problems. However, the existing DRL-based methods have been mainly focused on solving the decision-making of a single CAV. Using the existing DRL-based methods in mixed autonomy traffic cannot accurately represent the mutual effects of vehicles and model dynamic traffic environments. To address these shortcomings, this article proposes a graph reinforcement learning (GRL) approach for multi-agent decision-making of CAVs in mixed autonomy traffic. First, a generic and modular GRL framework is designed. Then, a systematic review of DRL and GRL methods is presented, focusing on the problems addressed in recent research. Moreover, a comparative study on different GRL methods is further proposed based on the designed framework to verify the effectiveness of GRL methods. Results show that the GRL methods can well optimize the performance of multi-agent decision-making for CAVs in mixed autonomy traffic compared to the DRL methods. Finally, challenges and future research directions are summarized. This study can provide a valuable research reference for solving the multi-agent decision-making problems of CAVs in mixed autonomy traffic and can promote the implementation of GRL-based methods into intelligent transportation systems. The source code of our work can be found at https://github.com/Jacklinkk/Graph_CAVs.
translated by 谷歌翻译
Traditional planning and control methods could fail to find a feasible trajectory for an autonomous vehicle to execute amongst dense traffic on roads. This is because the obstacle-free volume in spacetime is very small in these scenarios for the vehicle to drive through. However, that does not mean the task is infeasible since human drivers are known to be able to drive amongst dense traffic by leveraging the cooperativeness of other drivers to open a gap. The traditional methods fail to take into account the fact that the actions taken by an agent affect the behaviour of other vehicles on the road. In this work, we rely on the ability of deep reinforcement learning to implicitly model such interactions and learn a continuous control policy over the action space of an autonomous vehicle. The application we consider requires our agent to negotiate and open a gap in the road in order to successfully merge or change lanes. Our policy learns to repeatedly probe into the target road lane while trying to find a safe spot to move in to. We compare against two model-predictive control-based algorithms and show that our policy outperforms them in simulation.
translated by 谷歌翻译
行人在场的运动控制算法对于开发安全可靠的自动驾驶汽车(AV)至关重要。传统运动控制算法依赖于手动设计的决策政策,这些政策忽略了AV和行人之间的相互作用。另一方面,深度强化学习的最新进展允许在没有手动设计的情况下自动学习政策。为了解决行人在场的决策问题,作者介绍了一个基于社会价值取向和深入强化学习(DRL)的框架,该框架能够以不同的驾驶方式生成决策政策。该政策是在模拟环境中使用最先进的DRL算法培训的。还引入了适合DRL训练的新型计算效率的行人模型。我们执行实验以验证我们的框架,并对使用两种不同的无模型深钢筋学习算法获得的策略进行了比较分析。模拟结果表明,开发的模型如何表现出自然的驾驶行为,例如短暂的驾驶行为,以促进行人的穿越。
translated by 谷歌翻译