数字危害在移动生态系统中普遍存在。由于这些设备在日常生活中获得了更大的突出,因此太大了,因此增加了对个人的恶意攻击的潜力。最后一系列防御一系列数字伤害 - 包括数字分心,通过仇恨言论的政治极化,以及暴露于损坏材料的儿童 - 是用户界面。这项工作介绍了Greaeeterminator,使研究人员能够开发,部署和测试干预措施与最终用户的危害。我们展示了易于干预开发和部署,以及在五个深入案例研究中,潜在地覆盖了GreeSeterMinator的广泛危害。
translated by 谷歌翻译
Incivility remains a major challenge for online discussion platforms, to such an extent that even conversations between well-intentioned users can often derail into uncivil behavior. Traditionally, platforms have relied on moderators to -- with or without algorithmic assistance -- take corrective actions such as removing comments or banning users. In this work we propose a complementary paradigm that directly empowers users by proactively enhancing their awareness about existing tension in the conversation they are engaging in and actively guides them as they are drafting their replies to avoid further escalation. As a proof of concept for this paradigm, we design an algorithmic tool that provides such proactive information directly to users, and conduct a user study in a popular discussion platform. Through a mixed methods approach combining surveys with a randomized controlled experiment, we uncover qualitative and quantitative insights regarding how the participants utilize and react to this information. Most participants report finding this proactive paradigm valuable, noting that it helps them to identify tension that they may have otherwise missed and prompts them to further reflect on their own replies and to revise them. These effects are corroborated by a comparison of how the participants draft their reply when our tool warns them that their conversation is at risk of derailing into uncivil behavior versus in a control condition where the tool is disabled. These preliminary findings highlight the potential of this user-centered paradigm and point to concrete directions for future implementations.
translated by 谷歌翻译
In this chapter, we review and discuss the transformation of AI technology in HCI/UX work and assess how AI technology will change how we do the work. We first discuss how AI can be used to enhance the result of user research and design evaluation. We then discuss how AI technology can be used to enhance HCI/UX design. Finally, we discuss how AI-enabled capabilities can improve UX when users interact with computing systems, applications, and services.
translated by 谷歌翻译
机器学习传感器代表了嵌入式机器学习应用程序未来的范式转移。当前的嵌入式机器学习(ML)实例化遭受了复杂的整合,缺乏模块化以及数据流动的隐私和安全问题。本文提出了一个以数据为中心的范式,用于将传感器智能嵌入边缘设备上,以应对这些挑战。我们对“传感器2.0”的愿景需要将传感器输入数据和ML处理从硬件级别隔离到更广泛的系统,并提供一个薄的界面,以模拟传统传感器的功能。这种分离导致模块化且易于使用的ML传感器设备。我们讨论了将ML处理构建到嵌入式系统上控制微处理器的软件堆栈中的标准方法所带来的挑战,以及ML传感器的模块化如何减轻这些问题。 ML传感器提高了隐私和准确性,同时使系统构建者更容易将ML集成到其产品中,以简单的组件。我们提供了预期的ML传感器和说明性数据表的例子,以表现出来,并希望这将建立对话使我们朝着传感器2.0迈进。
translated by 谷歌翻译
The International Workshop on Reading Music Systems (WoRMS) is a workshop that tries to connect researchers who develop systems for reading music, such as in the field of Optical Music Recognition, with other researchers and practitioners that could benefit from such systems, like librarians or musicologists. The relevant topics of interest for the workshop include, but are not limited to: Music reading systems; Optical music recognition; Datasets and performance evaluation; Image processing on music scores; Writer identification; Authoring, editing, storing and presentation systems for music scores; Multi-modal systems; Novel input-methods for music to produce written music; Web-based Music Information Retrieval services; Applications and projects; Use-cases related to written music. These are the proceedings of the 2nd International Workshop on Reading Music Systems, held in Delft on the 2nd of November 2019.
translated by 谷歌翻译
Video, as a key driver in the global explosion of digital information, can create tremendous benefits for human society. Governments and enterprises are deploying innumerable cameras for a variety of applications, e.g., law enforcement, emergency management, traffic control, and security surveillance, all facilitated by video analytics (VA). This trend is spurred by the rapid advancement of deep learning (DL), which enables more precise models for object classification, detection, and tracking. Meanwhile, with the proliferation of Internet-connected devices, massive amounts of data are generated daily, overwhelming the cloud. Edge computing, an emerging paradigm that moves workloads and services from the network core to the network edge, has been widely recognized as a promising solution. The resulting new intersection, edge video analytics (EVA), begins to attract widespread attention. Nevertheless, only a few loosely-related surveys exist on this topic. A dedicated venue for collecting and summarizing the latest advances of EVA is highly desired by the community. Besides, the basic concepts of EVA (e.g., definition, architectures, etc.) are ambiguous and neglected by these surveys due to the rapid development of this domain. A thorough clarification is needed to facilitate a consensus on these concepts. To fill in these gaps, we conduct a comprehensive survey of the recent efforts on EVA. In this paper, we first review the fundamentals of edge computing, followed by an overview of VA. The EVA system and its enabling techniques are discussed next. In addition, we introduce prevalent frameworks and datasets to aid future researchers in the development of EVA systems. Finally, we discuss existing challenges and foresee future research directions. We believe this survey will help readers comprehend the relationship between VA and edge computing, and spark new ideas on EVA.
translated by 谷歌翻译
边缘计算是一个将数据处理服务转移到生成数据的网络边缘的范式。尽管这样的架构提供了更快的处理和响应,但除其他好处外,它还提出了必须解决的关键安全问题和挑战。本文讨论了从硬件层到系统层的边缘网络体系结构出现的安全威胁和漏洞。我们进一步讨论了此类网络中的隐私和法规合规性挑战。最后,我们认为需要一种整体方法来分析边缘网络安全姿势,该姿势必须考虑每一层的知识。
translated by 谷歌翻译
Deepfakes are computationally-created entities that falsely represent reality. They can take image, video, and audio modalities, and pose a threat to many areas of systems and societies, comprising a topic of interest to various aspects of cybersecurity and cybersafety. In 2020 a workshop consulting AI experts from academia, policing, government, the private sector, and state security agencies ranked deepfakes as the most serious AI threat. These experts noted that since fake material can propagate through many uncontrolled routes, changes in citizen behaviour may be the only effective defence. This study aims to assess human ability to identify image deepfakes of human faces (StyleGAN2:FFHQ) from nondeepfake images (FFHQ), and to assess the effectiveness of simple interventions intended to improve detection accuracy. Using an online survey, 280 participants were randomly allocated to one of four groups: a control group, and 3 assistance interventions. Each participant was shown a sequence of 20 images randomly selected from a pool of 50 deepfake and 50 real images of human faces. Participants were asked if each image was AI-generated or not, to report their confidence, and to describe the reasoning behind each response. Overall detection accuracy was only just above chance and none of the interventions significantly improved this. Participants' confidence in their answers was high and unrelated to accuracy. Assessing the results on a per-image basis reveals participants consistently found certain images harder to label correctly, but reported similarly high confidence regardless of the image. Thus, although participant accuracy was 62% overall, this accuracy across images ranged quite evenly between 85% and 30%, with an accuracy of below 50% for one in every five images. We interpret the findings as suggesting that there is a need for an urgent call to action to address this threat.
translated by 谷歌翻译
MetaVerse,巨大的虚拟物理网络空间,为艺术家带来了前所未有的机会,将我们的身体环境的每个角落与数字创造力混合。本文对计算艺术进行了全面的调查,其中七个关键主题与成权相关,描述了混合虚拟物理现实中的新颖艺术品。主题首先涵盖了MetaVerse的建筑元素,例如虚拟场景和字符,听觉,文本元素。接下来,已经反映了诸如沉浸式艺术,机器人艺术和其他用户以其他用户的方法提供了沉浸式艺术,机器人艺术和其他用户中心的若干非凡类型的新颖创作。最后,我们提出了几项研究议程:民主化的计算艺术,数字隐私和搬迁艺术家的安全性,为数字艺术品,技术挑战等等的所有权认可。该调查还担任艺术家和搬迁技术人员的介绍材料,以开始在超现实主义网络空间领域创造。
translated by 谷歌翻译
视频可访问性对于盲人和低愿景用户来说至关重要,以获得教育,就业和娱乐的公平参与。尽管有专业和业余服务和工具,但大多数人类生成的描述都很昂贵且耗时。此外,人生成的描述的速率不能匹配视频产生的速度。为了克服视频可访问性的越来越多的空白,我们开发了两个工具的混合系统到1)自动生成视频的描述,2)提供响应于视频上的用户查询的答案或附加描述。与26例盲和低视力下的混合方法研究结果表明,当两种工具在串联中使用时,我们的系统会显着提高用户理解和享受所选视频的理解和享受。此外,参与者报告说,在呈现自生物的描述与人类修订的自动化描述相关时,没有显着差异。我们的结果表明了对发达系统的热情及其承诺提供对视频的定制访问。我们讨论了当前工作的局限性,并为自动视频描述工具的未来发展提供了建议。
translated by 谷歌翻译
随着全球人口越来越多的人口驱动世界各地的快速城市化,有很大的需要蓄意审议值得生活的未来。特别是,随着现代智能城市拥抱越来越多的数据驱动的人工智能服务,值得记住技术可以促进繁荣,福祉,城市居住能力或社会正义,而是只有当它具有正确的模拟补充时(例如竭尽全力,成熟机构,负责任治理);这些智能城市的最终目标是促进和提高人类福利和社会繁荣。研究人员表明,各种技术商业模式和特征实际上可以有助于极端主义,极化,错误信息和互联网成瘾等社会问题。鉴于这些观察,解决了确保了诸如未来城市技术基岩的安全,安全和可解释性的哲学和道德问题,以为未来城市的技术基岩具有至关重要的。在全球范围内,有能够更加人性化和以人为本的技术。在本文中,我们分析和探索了在人以人为本的应用中成功部署AI的安全,鲁棒性,可解释性和道德(数据和算法)挑战的关键挑战,特别强调这些概念/挑战的融合。我们对这些关键挑战提供了对现有文献的详细审查,并分析了这些挑战中的一个可能导致他人的挑战方式或帮助解决其他挑战。本文还建议了这些域的当前限制,陷阱和未来研究方向,以及如何填补当前的空白并导致更好的解决方案。我们认为,这种严谨的分析将为域名的未来研究提供基准。
translated by 谷歌翻译
短片已成为年轻一代使用的领先媒体之一,以便在线表达自己,从而塑造在线文化中的驱动力。在这方面,Tiktok已成为往往首先发布病毒视频的平台。在本文中,我们研究了在Tiktok上发布的短片内容有助于他们的病毒。我们应用一种混合方法方法来开发码本并识别重要的病毒功能。我们这样做是如此vis- \'a-vis三个研究假设;即:1)视频内容,2)Tiktok的推荐算法,以及3)视频创建者的普及有助于病毒性。我们收集并标记400个Tiktok视频和火车分类器的数据集,以帮助我们确定最多影响景象的功能。虽然追随者的数量是最强大的预测因子,但特写和中射尺度也起到重要作用。因此视频的寿命,文本的存在以及观点。我们的研究突出了与非病毒Tiktok视频区分病毒的特征,奠定了制定额外方法来创建更多聘用的在线内容,并主动地确定可能达到大量受众的风险内容。
translated by 谷歌翻译
最近的隐私泄漏事件和更严格的政策法规要求公司和移动应用程序的合规标准更高。但是,此类义务还在应用程序开发人员遵守包含各种观点,活动和角色的这些法规方面面临重大挑战,尤其是对于在此问题或资源有限的小型公司和开发人员中。为了解决这些障碍,我们开发了一个自动工具NL2GDPR,该工具可以从开发人员的自然语言描述中制定策略,同时还可以确保该应用程序的功能符合通用数据保护法规(GDPR)。 NL2GDPR是通过利用由百度认知计算实验室开发的信息提取工具OIA(开放信息注释)开发的。核心,NL2GDPR是一个以隐私为中心的信息提取模型,附有GDPR策略查找器和策略生成器。我们进行一项全面的研究,以掌握提取以隐私为中心的信息和制定隐私政策的挑战,同时利用针对此特定任务的优化。借助NL2GDPR,我们可以在正确识别与个人数据存储,过程和共享类型相关的GDPR策略方面获得92.9%,95.2%和98.4%的精度。据我们所知,NL2GDPR是第一个允许开发人员自动生成GDPR策略的工具,只需要输入自然语言来描述应用程序功能。请注意,其他非GDPR相关功能可能与生成的功能集成在一起,以构建复杂的应用程序。
translated by 谷歌翻译
To address the widespread problem of uncivil behavior, many online discussion platforms employ human moderators to take action against objectionable content, such as removing it or placing sanctions on its authors. This reactive paradigm of taking action against already-posted antisocial content is currently the most common form of moderation, and has accordingly underpinned many recent efforts at introducing automation into the moderation process. Comparatively less work has been done to understand other moderation paradigms -- such as proactively discouraging the emergence of antisocial behavior rather than reacting to it -- and the role algorithmic support can play in these paradigms. In this work, we investigate such a proactive framework for moderation in a case study of a collaborative setting: Wikipedia Talk Pages. We employ a mixed methods approach, combining qualitative and design components for a holistic analysis. Through interviews with moderators, we find that despite a lack of technical and social support, moderators already engage in a number of proactive moderation behaviors, such as preemptively intervening in conversations to keep them on track. Further, we explore how automation could assist with this existing proactive moderation workflow by building a prototype tool, presenting it to moderators, and examining how the assistance it provides might fit into their workflow. The resulting feedback uncovers both strengths and drawbacks of the prototype tool and suggests concrete steps towards further developing such assisting technology so it can most effectively support moderators in their existing proactive moderation workflow.
translated by 谷歌翻译
随着数字时代的出现,由于技术进步,每天的任务都是自动化的。但是,技术尚未为人们提供足够的工具和保障措施。随着互联网连接全球越来越多的设备,确保连接设备的问题以均匀的螺旋速率增长。数据盗窃,身份盗窃,欺诈交易,密码妥协和系统漏洞正在成为常规的日常新闻。最近的人工智能进步引起了网络攻击的激烈威胁。 AI几乎应用于不同科学和工程的每个领域。 AI的干预不仅可以使特定任务自动化,而且可以提高效率。因此,很明显,如此美味的传播对网络犯罪分子来说是非常开胃的。因此,传统的网络威胁和攻击现在是``智能威胁''。本文讨论了网络安全和网络威胁,以及传统和智能的防御方式,以防止网络攻击。最终,结束讨论,以潜在的潜在前景结束讨论AI网络安全。
translated by 谷歌翻译
在研究和行业中,监督机器学习的日益增长增加了对标记数据集的需求。众包已经成为创建数据标签的一种流行方法。但是,处理大量任务会导致工人疲劳,从而产生负面影响的标签质量。为了解决这个问题,我们介绍了一个协作众包系统Trueyes,从而可以向移动应用程序用户分发微型任务。Trueyes允许机器学习实践者发布标签任务,移动应用程序开发人员以集成货币化的任务广告,以及用户来标记数据而不是观看广告。为了评估系统,我们对N = 296名参与者进行了实验。我们的结果表明,标记数据的质量与传统的众包方法相媲美,大多数用户更喜欢任务广告而不是传统广告。我们讨论了系统的扩展,并解决了将来如何将移动广告空间用作生产资源。
translated by 谷歌翻译
自主机器人结合了各种技能,形成越来越复杂的行为,称为任务。尽管这些技能通常以相对较低的抽象级别进行编程,但它们的协调是建筑分离的,并且经常以高级语言或框架表达。几十年来,州机器一直是首选的语言,但是最近,行为树的语言在机器人主义者中引起了人们的关注。行为树最初是为计算机游戏设计的,用于建模自主参与者,提供了基于树木的可扩展的使命表示,并受到支持支持模块化设计和代码的重复使用。但是,尽管使用了该语言的几种实现,但对现实世界中的用法和范围知之甚少。行为树提供的概念与传统语言(例如州机器)有何关系?应用程序中如何使用行为树和状态机概念?我们介绍了对行为树中关键语言概念的研究及其在现实世界机器人应用中的使用。我们识别行为树语言,并将其语义与机器人技术中最著名的行为建模语言进行比较。我们为使用这些语言的机器人应用程序挖掘开源存储库并分析此用法。我们发现两种行为建模语言在语言设计及其在开源项目中的用法之间的相似性方面,以满足机器人域的需求。我们为现实世界行为模型的数据集提供了贡献,希望激发社区使用和进一步开发这种语言,相关的工具和分析技术。
translated by 谷歌翻译
在自拍照上的增强现实或AR过滤器在社交媒体平台上已经非常受欢迎,用于各种应用程序,包括营销,娱乐和美学。鉴于AR面部过滤器的广泛采用以及面孔在我们的社会结构和关系中的重要性,科学界从心理,艺术和社会学的角度分析此类过滤器的影响增加了。但是,该领域的定量分析很少,这主要是由于缺乏具有应用AR过滤器的面部图像的公开数据集。大多数社交媒体平台的专有性,紧密的性质不允许用户,科学家和从业人员访问代码和可用AR面孔过滤器的详细信息。从这些平台上刮擦面孔以收集数据在道德上是不可接受的,因此应在研究中避免。在本文中,我们介绍了OpenFilter,这是一个灵活的框架,可在社交媒体平台上使用AR过滤器,可在现有的大量人体面孔上使用。此外,我们共享FairBeauty和B-LFW,这是公开可用的Fairface和LFW数据集的两个美化版本,我们概述了这些美化数据集的分析得出的见解。
translated by 谷歌翻译
Xenophobia is one of the key drivers of marginalisation, discrimination, and conflict, yet many prominent machine learning (ML) fairness frameworks fail to comprehensively measure or mitigate the resulting xenophobic harms. Here we aim to bridge this conceptual gap and help facilitate safe and ethical design of artificial intelligence (AI) solutions. We ground our analysis of the impact of xenophobia by first identifying distinct types of xenophobic harms, and then applying this framework across a number of prominent AI application domains, reviewing the potential interplay between AI and xenophobia on social media and recommendation systems, healthcare, immigration, employment, as well as biases in large pre-trained models. These help inform our recommendations towards an inclusive, xenophilic design of future AI systems.
translated by 谷歌翻译
The optimal liability framework for AI systems remains an unsolved problem across the globe. In a much-anticipated move, the European Commission advanced two proposals outlining the European approach to AI liability in September 2022: a novel AI Liability Directive and a revision of the Product Liability Directive. They constitute the final, and much-anticipated, cornerstone of AI regulation in the EU. Crucially, the liability proposals and the EU AI Act are inherently intertwined: the latter does not contain any individual rights of affected persons, and the former lack specific, substantive rules on AI development and deployment. Taken together, these acts may well trigger a Brussels effect in AI regulation, with significant consequences for the US and other countries. This paper makes three novel contributions. First, it examines in detail the Commission proposals and shows that, while making steps in the right direction, they ultimately represent a half-hearted approach: if enacted as foreseen, AI liability in the EU will primarily rest on disclosure of evidence mechanisms and a set of narrowly defined presumptions concerning fault, defectiveness and causality. Hence, second, the article suggests amendments, which are collected in an Annex at the end of the paper. Third, based on an analysis of the key risks AI poses, the final part of the paper maps out a road for the future of AI liability and regulation, in the EU and beyond. This includes: a comprehensive framework for AI liability; provisions to support innovation; an extension to non-discrimination/algorithmic fairness, as well as explainable AI; and sustainability. I propose to jump-start sustainable AI regulation via sustainability impact assessments in the AI Act and sustainable design defects in the liability regime. In this way, the law may help spur not only fair AI and XAI, but potentially also sustainable AI (SAI).
translated by 谷歌翻译