疾病进展模型的一个特殊挑战是疾病的异质性及其在患者中的表现。现有方法通常假设存在单一疾病进展特征,这对于诸如帕金森氏病等神经退行性疾病不太可能。在本文中,我们提出了一个分层的时间序列模型,该模型可以发现多种疾病进展动力学。提出的模型是投入输出隐藏模型的扩展,该模型考虑了患者健康状况和处方药的临床评估。我们使用合成生成的数据集和用于帕金森氏病的现实世界纵向数据集说明了模型的好处。
translated by 谷歌翻译
无监督的学习通常用于揭示数据中的群集。然而,不同类型的噪声可能会妨碍来自真实世界的时间序列数据的有用模式的发现。在这项工作中,我们专注于减轻疾病表型群体任务中的间隔审查的干扰。我们开发了一个深入的生成,连续时间模型,时间序列数据串联时间系列,同时纠正审查时间。我们提供了在无噪声模型下的数据中识别群集和延迟条目的条件。
translated by 谷歌翻译
在过去二十年中,识别具有不同纵向数据趋势的群体的方法已经成为跨越许多研究领域的兴趣。为了支持研究人员,我们总结了文献关于纵向聚类的指导。此外,我们提供了一种纵向聚类方法,包括基于基团的轨迹建模(GBTM),生长混合模拟(GMM)和纵向K平均值(KML)。该方法在基本级别引入,并列出了强度,限制和模型扩展。在最近数据收集的发展之后,将注意这些方法的适用性赋予密集的纵向数据(ILD)。我们展示了使用R.中可用的包在合成数据集上的应用程序的应用。
translated by 谷歌翻译
我们为异质电子健康记录(EHR)数据开发了无监督的概率模型。利用混合模型公式,我们的方法直接建模了任意长度的序列,例如药物和实验室结果。这允许亚组和掺入基础异质数据类型的动力学。该模型由一组层次的潜在变量集组成,这些变量编码数据中的基础结构。这些变量代表顶层的主题亚组,而在第二层中的序列未观察到的状态未观察到。我们在Kaiser Permanente North California综合医疗保健提供系统中接受了接受医疗服务的受试者的情节数据训练该模型。训练有素的模型的最终属性从这些复杂和多方面的数据中产生了新的见解。此外,我们还展示了该模型如何用于分析有助于评估死亡率可能性的序列。
translated by 谷歌翻译
从电子健康记录(EHR)数据中进行有效学习来预测临床结果,这通常是具有挑战性的,因为在不规则的时间段记录的特征和随访的损失以及竞争性事件(例如死亡或疾病进展)。为此,我们提出了一种生成的事实模型,即Survlatent Ode,该模型采用了基于基于微分方程的复发性神经网络(ODE-RNN)作为编码器,以有效地对不规则采样的输入数据进行潜在状态的动力学有效地参数化。然后,我们的模型利用所得的潜在嵌入来灵活地估计多个竞争事件的生存时间,而无需指定事件特定危害功能的形状。我们展示了我们在Mimic-III上的竞争性能,这是一种从重症监护病房收集的自由纵向数据集,预测医院死亡率以及DANA-FARBER癌症研究所(DFCI)的数据,以预测静脉血栓症(静脉血栓症(DFCI)(DFCI)( VTE),是癌症患者的生命并发症,死亡作为竞争事件。幸存ODE优于分层VTE风险组的当前临床标准Khorana风险评分,同时提供临床上有意义且可解释的潜在表示。
translated by 谷歌翻译
Health sensing for chronic disease management creates immense benefits for social welfare. Existing health sensing studies primarily focus on the prediction of physical chronic diseases. Depression, a widespread complication of chronic diseases, is however understudied. We draw on the medical literature to support depression prediction using motion sensor data. To connect human expertise in the decision-making, safeguard trust for this high-stake prediction, and ensure algorithm transparency, we develop an interpretable deep learning model: Temporal Prototype Network (TempPNet). TempPNet is built upon the emergent prototype learning models. To accommodate the temporal characteristic of sensor data and the progressive property of depression, TempPNet differs from existing prototype learning models in its capability of capturing the temporal progression of depression. Extensive empirical analyses using real-world motion sensor data show that TempPNet outperforms state-of-the-art benchmarks in depression prediction. Moreover, TempPNet interprets its predictions by visualizing the temporal progression of depression and its corresponding symptoms detected from sensor data. We further conduct a user study to demonstrate its superiority over the benchmarks in interpretability. This study offers an algorithmic solution for impactful social good - collaborative care of chronic diseases and depression in health sensing. Methodologically, it contributes to extant literature with a novel interpretable deep learning model for depression prediction from sensor data. Patients, doctors, and caregivers can deploy our model on mobile devices to monitor patients' depression risks in real-time. Our model's interpretability also allows human experts to participate in the decision-making by reviewing the interpretation of prediction outcomes and making informed interventions.
translated by 谷歌翻译
纵向生物医学数据通常是稀疏时间网格和个体特定发展模式的特征。具体而言,在流行病学队列研究和临床登记处,我们面临的问题是在研究早期阶段中可以从数据中学到的问题,只有基线表征和一个后续测量。灵感来自最近的进步,允许将深度学习与动态建模相结合,我们调查这些方法是否可用于揭示复杂结构,特别是对于每个单独的两个观察时间点的极端小数据设置。然后,通过利用个体的相似性,可以使用不规则间距来获得有关个体动态的更多信息。我们简要概述了变形的自动化器(VAES)如何作为深度学习方法,可以与普通微分方程(ODES)相关联用于动态建模,然后具体研究这种方法的可行性,即提供个人特定的潜在轨迹的方法通过包括规律性假设和个人的相似性。我们还提供了对这种深度学习方法的描述作为过滤任务,以提供统计的视角。使用模拟数据,我们展示了方法可以在多大程度上从多大程度上恢复具有两个和四个未知参数的颂歌系统的单个轨迹,以及使用具有类似轨迹的个体群体,以及其崩溃的地方。结果表明,即使在极端的小数据设置中,这种动态深度学习方法也可能是有用的,但需要仔细调整。
translated by 谷歌翻译
随着时间的流逝,估计反事实结果有可能通过协助决策者回答“假设”问题来解锁个性化医疗保健。现有的因果推理方法通常考虑观察和治疗决策之间的定期离散时间间隔,因此无法自然地模拟不规则采样的数据,这是实践中的共同环境。为了处理任意观察模式,我们将数据解释为基础连续时间过程中的样本,并建议使用受控微分方程的数学明确地对其潜在轨迹进行建模。这导致了一种新方法,即治疗效果神经控制的微分方程(TE-CDE),该方程可在任何时间点评估潜在的结果。此外,对抗性训练用于调整时间依赖性混杂,这在纵向环境中至关重要,这是常规时间序列中未遇到的额外挑战。为了评估解决此问题的解决方案,我们提出了一个基于肿瘤生长模型的可控仿真环境,以反映出各种临床方案的一系列场景。在所有模拟场景中,TE-CDE始终优于现有方法,并具有不规则采样。
translated by 谷歌翻译
我们介绍了一个新型的多层加权网络模型,该模型除了本地信号外,还考虑了全局噪声。该模型类似于多层随机块模型(SBM),但关键区别在于,跨层之间的块之间的相互作用在整个系统中是常见的,我们称之为环境噪声。单个块还以这些固定的环境参数为特征,以表示不属于其他任何地方的成员。这种方法允许将块同时聚类和类型化到信号或噪声中,以便更好地理解其在整个系统中的作用,而现有块模型未考虑。我们采用了分层变异推断的新颖应用来共同检测和区分块类型。我们称此模型为多层加权网络称为随机块(具有)环境噪声模型(SBANM),并开发了相关的社区检测算法。我们将此方法应用于费城神经发育队列中的受试者,以发现与精神病有关的具有共同心理病理学的受试者社区。
translated by 谷歌翻译
源于机器学习和优化的临床决策支持工具可以为医疗保健提供者提供显着的价值,包括通过更好地管理重症监护单位。特别是,重要的是,患者排放任务在降低患者的住宿时间(以及相关住院费用)和放弃决策后的入院甚至死亡的风险之间存在对细微的折衷。这项工作介绍了一个端到端的一般框架,用于捕获这种权衡,以推荐患者电子健康记录的最佳放电计时决策。数据驱动方法用于导出捕获患者的生理条件的解析,离散状态空间表示。基于该模型和给定的成本函数,在数值上制定并解决了无限的地平线折扣明马尔科夫决策过程,以计算最佳的排放政策,其价值使用违规评估策略进行评估。进行广泛的数值实验以使用现实生活重症监护单元患者数据来验证所提出的框架。
translated by 谷歌翻译
COVID-19的大流行提出了对多个领域决策者的流行预测的重要性,从公共卫生到整个经济。虽然预测流行进展经常被概念化为类似于天气预测,但是它具有一些关键的差异,并且仍然是一项非平凡的任务。疾病的传播受到人类行为,病原体动态,天气和环境条件的多种混杂因素的影响。由于政府公共卫生和资助机构的倡议,捕获以前无法观察到的方面的丰富数据来源的可用性增加了研究的兴趣。这尤其是在“以数据为中心”的解决方案上进行的一系列工作,这些解决方案通过利用非传统数据源以及AI和机器学习的最新创新来增强我们的预测能力的潜力。这项调查研究了各种数据驱动的方法论和实践进步,并介绍了一个概念框架来导航它们。首先,我们列举了与流行病预测相关的大量流行病学数据集和新的数据流,捕获了各种因素,例如有症状的在线调查,零售和商业,流动性,基因组学数据等。接下来,我们将讨论关注最近基于数据驱动的统计和深度学习方法的方法和建模范式,以及将机械模型知识域知识与统计方法的有效性和灵活性相结合的新型混合模型类别。我们还讨论了这些预测系统的现实部署中出现的经验和挑战,包括预测信息。最后,我们重点介绍了整个预测管道中发现的一些挑战和开放问题。
translated by 谷歌翻译
医疗数据集通常由噪声和缺失数据损坏。这些缺失的模式通常被认为是完全随机的,而是在医学场景中,现实是,这些模式由于在一些时间或数据被收集的不alaled的不均匀方式中被收集的传感器而发生突发。本文建议使用异构数据类型和使用顺序变化自动码器(VAES)来模拟医疗数据记录和突发的缺失数据。特别是,我们提出了一种新的方法,SHI-VAE,其扩展了VAE的能力,使VAE的顺序数据流缺失了观察。我们将我们的模型与精密护理单元数据库(ICU)中的最先进的解决方案进行比较和被动人类监测的数据集。此外,我们发现诸如RMSE的标准错误指标不能得出足够的决定性,以评估时间模型,并包括在我们分析地面真理和算中信号之间的互相关。我们表明Shi-VAE在使用两个指标方面实现了最佳性能,而不是GP-VAE模型的计算复杂性较低,这是用于医疗记录的最先进的方法。
translated by 谷歌翻译
纵向电子健康记录(EHR)数据的可用性增加导致改善对疾病的理解和新颖表型的发现。大多数聚类算法仅关注患者轨迹,但具有类似轨迹的患者可能具有不同的结果。寻找不同轨迹和结果的患者亚组可以引导未来的药物开发,改善临床试验的招募。我们使用可以加权的重建,结果和聚类损耗开发经常性神经网络自动拓群体以群集EHR数据,以查找不同类型的患者群集。我们展示我们的模型能够从数据偏差和结果差异中发现已知的集群,表现优于基线模型。我们展示了29,222,229美元糖尿病患者的模型性能,显示出发现患有不同轨迹和不同结果的患者的簇,可用于帮助临床决策。
translated by 谷歌翻译
影响重症患者护理的许多基本问题会带来类似的分析挑战:医生无法轻易估计处于危险的医疗状况或治疗的影响,因为医疗状况和药物的因果影响是纠缠的。他们也无法轻易进行研究:没有足够的高质量数据来进行高维观察性因果推断,并且通常无法在道德上进行RCT。但是,机械知识可获得,包括如何吸收人体药物,并且这些知识与有限数据的结合可能就足够了 - 如果我们知道如何结合它们。在这项工作中,我们提出了一个框架,用于在这些复杂条件下对重症患者的因果影响估算:随着时间的流逝,药物与观察之间的相互作用,不大的患者数据集以及可以代替缺乏数据的机械知识。我们将此框架应用于影响重症患者的极其重要的问题,即癫痫发作和大脑中其他潜在有害的电气事件的影响(称为癫痫样活动 - EA)对结局。鉴于涉及的高赌注和数据中的高噪声,可解释性对于解决此类复杂问题的故障排除至关重要。我们匹配的小组的解释性使神经科医生可以执行图表审查,以验证我们的因果分析的质量。例如,我们的工作表明,患者经历了高水平的癫痫发作般的活动(75%的EA负担),并且未经治疗的六个小时的窗口未受治疗,平均而言,这种不良后果的机会增加了16.7%。作为严重的大脑损伤,终生残疾或死亡。我们发现患有轻度但长期EA的患者(平均EA负担> = 50%)患有不良结果的风险增加了11.2%。
translated by 谷歌翻译
肥胖是一个重大的健康问题,增加了各种主要慢性病的风险,如糖尿病,癌症和中风。虽然通过横断面BMI录音识别的肥胖作用已经过分研究,但BMI轨迹的作用远远不大。在这项研究中,我们利用从大型和地理位置的EHR数据集中提取的BMI轨迹捕获大约200万个人的健康状况为期六年的健康状况。我们根据BMI轨迹定义九个新的可解释和基于证据的变量,以使用K-Means聚类方法将患者聚类为子组。我们在人口统计学,社会经济和生理测量变量方面彻底审查了每个集群特征,以指定簇中患者的不同性质。在我们的实验中,已被重新建立肥胖,高血压,阿尔茨海默和痴呆症的肥胖,高血压,阿尔茨海默氏症和痴呆症的直接关系,并且已经发现有几种慢性疾病的特异性特征的不同簇符合或与现有的知识体系互补。
translated by 谷歌翻译
引入了涉及高斯流程(GPS)的模型,以同时处理多个功能数据的多任务学习,聚类和预测。该过程充当了功能数据的基于模型的聚类方法,也是对新任务进行后续预测的学习步骤。该模型是将多任务GPS与常见平均过程的混合物实例化。得出了一种用于处理超参数的优化以及超构件对潜在变量和过程的估计的优化。我们建立了明确的公式,用于将平均过程和潜在聚类变量整合到预测分布中,这是两个方面的不确定性。该分布定义为集群特异性GP预测的混合物,在处理组结构数据时,可以增强性能。该模型处理观察的不规则网格,并提供了关于协方差结构的不同假设,用于在任务之间共享其他信息。聚类和预测任务上的性能将通过各种模拟方案和真实数据集进行评估。总体算法称为magmaclust,可公开作为R包。
translated by 谷歌翻译
流行病学中的数学模型是一种不可或缺的工具,可以确定传染病的动态和重要特征。除了他们的科学价值之外,这些模型通常用于在正在进行的爆发期间提供政治决策和干预措施。然而,通过将复杂模型连接到真实数据来可靠地推断正在进行的爆发的动态仍然很难,并且需要费力的手动参数拟合或昂贵的优化方法,这些方法必须从划痕中重复给定模型的每个应用。在这项工作中,我们用专门的神经网络的流行病学建模的新组合来解决这个问题。我们的方法需要两个计算阶段:在初始训练阶段中,描述该流行病的数学模型被用作神经网络的教练,该主管是关于全球可能疾病动态的全球知识。在随后的推理阶段,训练有素的神经网络处理实际爆发的观察到的数据,并且揭示了模型的参数,以便实际地再现观察到的动态并可可靠地预测未来的进展。通过其灵活的框架,我们的仿真方法适用于各种流行病学模型。此外,由于我们的方法是完全贝叶斯的,它旨在纳入所有可用的关于合理参数值的先前知识,并返回这些参数上的完整关节后部分布。我们的方法在德国的早期Covid-19爆发阶段的应用表明,我们能够获得可靠的概率估计对重要疾病特征,例如生成时间,未检测到的感染部分,症状发作前的传播可能性,以及报告延迟非常适中的现实观测。
translated by 谷歌翻译
生成的对抗网络(GAN)是在众多领域成功使用的一种强大的深度学习模型。它们属于一个称为生成方法的更广泛的家族,该家族通过从真实示例中学习样本分布来生成新数据。在临床背景下,与传统的生成方法相比,GAN在捕获空间复杂,非线性和潜在微妙的疾病作用方面表现出增强的能力。这篇综述评估了有关gan在各种神经系统疾病的成像研究中的应用的现有文献,包括阿尔茨海默氏病,脑肿瘤,脑老化和多发性硬化症。我们为每个应用程序提供了各种GAN方法的直观解释,并进一步讨论了在神经影像学中利用gans的主要挑战,开放问题以及有希望的未来方向。我们旨在通过强调如何利用gan来支持临床决策,并有助于更好地理解脑部疾病的结构和功能模式,从而弥合先进的深度学习方法和神经病学研究之间的差距。
translated by 谷歌翻译
计算表型可以无监督发现患者的亚组以及电子健康记录(EHR)的相应同时发生的医疗状况。通常,EHR数据包含人口统计信息,诊断和实验室结果。发现(新颖的)表型具有预后和治疗价值的潜力。为医生提供透明且可解释的结果是一项重要要求,也是推进精确医学的重要组成部分。低级别数据近似方法,例如矩阵(例如,非负矩阵分解)和张量分解(例如,candecomp/parafac),已经证明它们可以提供这种透明且可解释的见解。最近的发展通过合并不同的限制和正规化来促进可解释性,从而适应了低级数据近似方法。此外,它们还为EHR数据中的共同挑战提供解决方案,例如高维度,数据稀疏性和不完整性。尤其是从纵向EHR中提取时间表型,近年来引起了很多关注。在本文中,我们对计算表型的低级别近似方法进行了全面的综述。现有文献根据矩阵与张量分解归类为时间与静态表型方法。此外,我们概述了验证表型的不同方法,即评估临床意义。
translated by 谷歌翻译
因果关系的概念在人类认知中起着重要作用。在过去的几十年中,在许多领域(例如计算机科学,医学,经济学和教育)中,因果推论已经得到很好的发展。随着深度学习技术的发展,它越来越多地用于针对反事实数据的因果推断。通常,深层因果模型将协变量的特征映射到表示空间,然后设计各种客观优化函数,以根据不同的优化方法公正地估算反事实数据。本文重点介绍了深层因果模型的调查,其核心贡献如下:1)我们在多种疗法和连续剂量治疗下提供相关指标; 2)我们从时间开发和方法分类的角度综合了深层因果模型的全面概述; 3)我们协助有关相关数据集和源代码的详细且全面的分类和分析。
translated by 谷歌翻译