Learning with noisy labels is a vital topic for practical deep learning as models should be robust to noisy open-world datasets in the wild. The state-of-the-art noisy label learning approach JoCoR fails when faced with a large ratio of noisy labels. Moreover, selecting small-loss samples can also cause error accumulation as once the noisy samples are mistakenly selected as small-loss samples, they are more likely to be selected again. In this paper, we try to deal with error accumulation in noisy label learning from both model and data perspectives. We introduce mean point ensemble to utilize a more robust loss function and more information from unselected samples to reduce error accumulation from the model perspective. Furthermore, as the flip images have the same semantic meaning as the original images, we select small-loss samples according to the loss values of flip images instead of the original ones to reduce error accumulation from the data perspective. Extensive experiments on CIFAR-10, CIFAR-100, and large-scale Clothing1M show that our method outperforms state-of-the-art noisy label learning methods with different levels of label noise. Our method can also be seamlessly combined with other noisy label learning methods to further improve their performance and generalize well to other tasks. The code is available in https://github.com/zyh-uaiaaaa/MDA-noisy-label-learning.
translated by 谷歌翻译
由于类间的相似性和注释歧义,嘈杂的标签面部表达识别(FER)比传统的嘈杂标签分类任务更具挑战性。最近的作品主要通过过滤大量损坏样本来解决此问题。在本文中,我们从新功能学习的角度探索了嘈杂的标签。我们发现,FER模型通过专注于可以认为与嘈杂标签相关的一部分来记住嘈杂的样本,而不是从导致潜在真理的整个功能中学习。受到的启发,我们提出了一种新颖的擦除注意力一致性(EAC)方法,以自动抑制嘈杂的样品。具体而言,我们首先利用面部图像的翻转语义一致性来设计不平衡的框架。然后,我们随机删除输入图像,并使用翻转注意一致性,以防止模型专注于部分特征。 EAC明显优于最先进的嘈杂标签方法,并将其概括地概括为其他类似CIFAR100和Tiny-Imagenet等类别的任务。该代码可在https://github.com/zyh-uaiaaaa/erasing-prestention-consistency中获得。
translated by 谷歌翻译
Deep Learning with noisy labels is a practically challenging problem in weakly supervised learning. The stateof-the-art approaches "Decoupling" and "Co-teaching+" claim that the "disagreement" strategy is crucial for alleviating the problem of learning with noisy labels. In this paper, we start from a different perspective and propose a robust learning paradigm called JoCoR, which aims to reduce the diversity of two networks during training. Specifically, we first use two networks to make predictions on the same mini-batch data and calculate a joint loss with Co-Regularization for each training example. Then we select small-loss examples to update the parameters of both two networks simultaneously. Trained by the joint loss, these two networks would be more and more similar due to the effect of Co-Regularization. Extensive experimental results on corrupted data from benchmark datasets including MNIST, CIFAR-10, CIFAR-100 and Clothing1M demonstrate that JoCoR is superior to many state-of-the-art approaches for learning with noisy labels.
translated by 谷歌翻译
Deep neural networks are known to be annotation-hungry. Numerous efforts have been devoted to reducing the annotation cost when learning with deep networks. Two prominent directions include learning with noisy labels and semi-supervised learning by exploiting unlabeled data. In this work, we propose DivideMix, a novel framework for learning with noisy labels by leveraging semi-supervised learning techniques. In particular, DivideMix models the per-sample loss distribution with a mixture model to dynamically divide the training data into a labeled set with clean samples and an unlabeled set with noisy samples, and trains the model on both the labeled and unlabeled data in a semi-supervised manner. To avoid confirmation bias, we simultaneously train two diverged networks where each network uses the dataset division from the other network. During the semi-supervised training phase, we improve the MixMatch strategy by performing label co-refinement and label co-guessing on labeled and unlabeled samples, respectively. Experiments on multiple benchmark datasets demonstrate substantial improvements over state-of-the-art methods. Code is available at https://github.com/LiJunnan1992/DivideMix.
translated by 谷歌翻译
实际数据集中不可避免地有许多错误标记的数据。由于深度神经网络(DNNS)具有记忆标签的巨大能力,因此需要强大的训练方案来防止标签错误降低DNN的概括性能。当前的最新方法提出了一种共同训练方案,该方案使用与小损失相关的样本训练双网络。但是,实际上,培训两个网络可以同时负担计算资源。在这项研究中,我们提出了一种简单而有效的健壮培训计划,该计划仅通过培训一个网络来运行。在训练过程中,提出的方法通过从随机梯度下降优化形成的重量轨迹中抽样中间网络参数来生成时间自我启动。使用这些自我归档评估的损失总和用于识别错误标记的样品。同时,我们的方法通过将输入数据转换为各种形式,并考虑其协议以识别错误标记的样本来生成多视图预测。通过结合上述指标,我们介绍了提出的{\ it基于自动化的鲁棒训练}(SRT)方法,该方法可以用嘈杂的标签过滤样品,以减少其对训练的影响。广泛使用的公共数据集的实验表明,所提出的方法在某些类别中实现了最新的性能,而无需训练双网络。
translated by 谷歌翻译
自数据注释(尤其是对于大型数据集)以来,使用嘈杂的标签学习引起了很大的研究兴趣,这可能不可避免地不可避免。最近的方法通过将培训样本分为清洁和嘈杂的集合来求助于半监督的学习问题。然而,这种范式在重标签噪声下容易出现重大变性,因为干净样品的数量太小,无法进行常规方法。在本文中,我们介绍了一个新颖的框架,称为LC-Booster,以在极端噪音下明确处理学习。 LC-Booster的核心思想是将标签校正纳入样品选择中,以便可以通过可靠的标签校正来培训更纯化的样品,从而减轻确认偏差。实验表明,LC-Booster在几个嘈杂标签的基准测试中提高了最先进的结果,包括CIFAR-10,CIFAR-100,CLASTINGING 1M和WEBVISION。值得注意的是,在极端的90 \%噪声比下,LC-Booster在CIFAR-10和CIFAR-100上获得了92.9 \%和48.4 \%的精度,超过了最终方法,较大的边距就超过了最终方法。
translated by 谷歌翻译
不完美的标签在现实世界数据集中无处不在,严重损害了模型性能。几个最近处理嘈杂标签的有效方法有两个关键步骤:1)将样品分开通过培训丢失,2)使用半监控方法在错误标记的集合中生成样本的伪标签。然而,由于硬样品和噪声之间的类似损失分布,目前的方法总是损害信息性的硬样品。在本文中,我们提出了PGDF(先前引导的去噪框架),通过生成样本的先验知识来学习深层模型来抑制噪声的新框架,这被集成到分割样本步骤和半监督步骤中。我们的框架可以将更多信息性硬清洁样本保存到干净标记的集合中。此外,我们的框架还通过抑制当前伪标签生成方案中的噪声来促进半监控步骤期间伪标签的质量。为了进一步增强硬样品,我们在训练期间在干净的标记集合中重新重量样品。我们使用基于CiFar-10和CiFar-100的合成数据集以及现实世界数据集WebVision和服装1M进行了评估了我们的方法。结果表明了最先进的方法的大量改进。
translated by 谷歌翻译
Convolutional Neural Networks (CNNs) have demonstrated superiority in learning patterns, but are sensitive to label noises and may overfit noisy labels during training. The early stopping strategy averts updating CNNs during the early training phase and is widely employed in the presence of noisy labels. Motivated by biological findings that the amplitude spectrum (AS) and phase spectrum (PS) in the frequency domain play different roles in the animal's vision system, we observe that PS, which captures more semantic information, can increase the robustness of DNNs to label noise, more so than AS can. We thus propose early stops at different times for AS and PS by disentangling the features of some layer(s) into AS and PS using Discrete Fourier Transform (DFT) during training. Our proposed Phase-AmplituDe DisentangLed Early Stopping (PADDLES) method is shown to be effective on both synthetic and real-world label-noise datasets. PADDLES outperforms other early stopping methods and obtains state-of-the-art performance.
translated by 谷歌翻译
带有嘈杂标签的训练深神经网络(DNN)实际上是具有挑战性的,因为不准确的标签严重降低了DNN的概括能力。以前的努力倾向于通过识别带有粗糙的小损失标准来减轻嘈杂标签的干扰的嘈杂数据来处理统一的denoising流中的零件或完整数据,而忽略了嘈杂样本的困难是不同的,因此是刚性和统一的。数据选择管道无法很好地解决此问题。在本文中,我们首先提出了一种称为CREMA的粗到精细的稳健学习方法,以分裂和串扰的方式处理嘈杂的数据。在粗糙水平中,干净和嘈杂的集合首先从统计意义上就可信度分开。由于实际上不可能正确对所有嘈杂样本进行分类,因此我们通过对每个样本的可信度进行建模来进一步处理它们。具体而言,对于清洁集,我们故意设计了一种基于内存的调制方案,以动态调整每个样本在训练过程中的历史可信度顺序方面的贡献,从而减轻了错误地分组为清洁集中的嘈杂样本的效果。同时,对于分类为嘈杂集的样品,提出了选择性标签更新策略,以纠正嘈杂的标签,同时减轻校正错误的问题。广泛的实验是基于不同方式的基准,包括图像分类(CIFAR,Clothing1M等)和文本识别(IMDB),具有合成或自然语义噪声,表明CREMA的优势和普遍性。
translated by 谷歌翻译
在标签噪声下训练深神网络的能力很有吸引力,因为不完美的注释数据相对便宜。最先进的方法基于半监督学习(SSL),该学习选择小损失示例为清洁,然后应用SSL技术来提高性能。但是,选择步骤主要提供一个中等大小的清洁子集,该子集可俯瞰丰富的干净样品。在这项工作中,我们提出了一个新颖的嘈杂标签学习框架Promix,试图最大程度地提高清洁样品的实用性以提高性能。我们方法的关键是,我们提出了一种匹配的高信心选择技术,该技术选择了那些具有很高置信的示例,并与给定标签进行了匹配的预测。结合小损失选择,我们的方法能够达到99.27的精度,并在检测CIFAR-10N数据集上的干净样品时召回98.22。基于如此大的清洁数据,Promix将最佳基线方法提高了CIFAR-10N的 +2.67%,而CIFAR-100N数据集则提高了 +1.61%。代码和数据可从https://github.com/justherozen/promix获得
translated by 谷歌翻译
Learning with noisy labels is one of the hottest problems in weakly-supervised learning. Based on memorization effects of deep neural networks, training on small-loss instances becomes very promising for handling noisy labels. This fosters the state-of-the-art approach "Co-teaching" that cross-trains two deep neural networks using the small-loss trick. However, with the increase of epochs, two networks converge to a consensus and Co-teaching reduces to the self-training MentorNet. To tackle this issue, we propose a robust learning paradigm called Co-teaching+, which bridges the "Update by Disagreement" strategy with the original Co-teaching. First, two networks feed forward and predict all data, but keep prediction disagreement data only. Then, among such disagreement data, each network selects its small-loss data, but back propagates the small-loss data from its peer network and updates its own parameters. Empirical results on benchmark datasets demonstrate that Co-teaching+ is much superior to many state-of-theart methods in the robustness of trained models.
translated by 谷歌翻译
深神经网络(DNN)的记忆效果在许多最先进的标签噪声学习方法中起着枢轴作用。为了利用这一财产,通常采用早期停止训练早期优化的伎俩。目前的方法通常通过考虑整个DNN来决定早期停止点。然而,DNN可以被认为是一系列层的组成,并且发现DNN中的后一个层对标签噪声更敏感,而其前同行是非常稳健的。因此,选择整个网络的停止点可以使不同的DNN层对抗彼此影响,从而降低最终性能。在本文中,我们建议将DNN分离为不同的部位,逐步培训它们以解决这个问题。而不是早期停止,它一次列举一个整体DNN,我们最初通过用相对大量的时期优化DNN来训练前DNN层。在培训期间,我们通过使用较少数量的时期使用较少的地层来逐步培训后者DNN层,以抵消嘈杂标签的影响。我们将所提出的方法术语作为渐进式早期停止(PES)。尽管其简单性,与早期停止相比,PES可以帮助获得更有前景和稳定的结果。此外,通过将PE与现有的嘈杂标签培训相结合,我们在图像分类基准上实现了最先进的性能。
translated by 谷歌翻译
深度学习在许多领域取得了许多显着的成就,但数据集中有嘈杂的标签。使用嘈杂的标签方法共同教学和共同教学的最先进的学习+通过双网络之间的相互信息面对嘈杂的标签。但是,双网络始终倾向于收敛,这会削弱双网机制以抵抗嘈杂标签。在本文中,我们以端到端的方式提出了一个名为MLC的耐噪声框架。它通过不同的正则化来调整双网络,以确保机制的有效性。此外,我们根据双网络之间的协议纠正标签分布。提出的方法可以利用嘈杂的数据来提高网络的准确性,概括和鲁棒性。我们在模拟嘈杂的数据集MNIST,CIFAR-10和现实世界嘈杂的数据集服装上测试了提出的方法。1M。实验结果表明,我们的方法优于先前的最新方法。此外,我们的方法是无网络的,因此它适用于许多任务。我们的代码可以在https://github.com/jiarunliu/mlc上找到。
translated by 谷歌翻译
样品选择是减轻标签噪声在鲁棒学习中的影响的有效策略。典型的策略通常应用小损失标准来识别干净的样品。但是,这些样本位于决策边界周围,通常会与嘈杂的例子纠缠在一起,这将被此标准丢弃,从而导致概括性能的严重退化。在本文中,我们提出了一种新颖的选择策略,\ textbf {s} elf- \ textbf {f} il \ textbf {t} ering(sft),它利用历史预测中嘈杂的示例的波动来过滤它们,可以过滤它们,这可以是可以过滤的。避免在边界示例中的小损失标准的选择偏置。具体来说,我们介绍了一个存储库模块,该模块存储了每个示例的历史预测,并动态更新以支持随后的学习迭代的选择。此外,为了减少SFT样本选择偏置的累积误差,我们设计了一个正规化术语来惩罚自信的输出分布。通过通过此术语增加错误分类类别的重量,损失函数在轻度条件下标记噪声是可靠的。我们对具有变化噪声类型的三个基准测试并实现了新的最先进的实验。消融研究和进一步分析验证了SFT在健壮学习中选择样本的优点。
translated by 谷歌翻译
在标签 - 噪声学习中,估计过渡矩阵是一个热门话题,因为矩阵在构建统计上一致的分类器中起着重要作用。传统上,从干净的标签到嘈杂的标签(即,清洁标签过渡矩阵(CLTM))已被广泛利用,以通过使用嘈杂的数据来学习干净的标签分类器。该分类器的动机主要是输出贝叶斯的最佳预测标签,在本文中,我们研究以直接建模从贝叶斯最佳标签过渡到嘈杂标签(即贝叶斯标签,贝叶斯标签,是BLTM)),并学习分类器以预测贝叶斯最佳的分类器标签。请注意,只有嘈杂的数据,它不足以估计CLTM或BLTM。但是,贝叶斯最佳标签与干净标签相比,贝叶斯最佳标签的不确定性较小,即,贝叶斯最佳标签的类后代是一热矢量,而干净标签的载体则不是。这使两个优点能够估算BLTM,即(a)一组具有理论上保证的贝叶斯最佳标签的示例可以从嘈杂的数据中收集; (b)可行的解决方案空间要小得多。通过利用优势,我们通过采用深层神经网络来估计BLTM参数,从而更好地概括和出色的分类性能。
translated by 谷歌翻译
深度神经网络模型对有限的标签噪声非常强大,但是它们在高噪声率问题中记住嘈杂标签的能力仍然是一个空旷的问题。最具竞争力的嘈杂标签学习算法依赖于一个2阶段的过程,其中包括无监督的学习,将培训样本分类为清洁或嘈杂,然后是半监督的学习,将经验仿生风险(EVR)最小化,该学习使用标记的集合制成的集合。样品被归类为干净,并提供了一个未标记的样品,该样品被分类为嘈杂。在本文中,我们假设这种2阶段嘈杂标签的学习方法的概括取决于无监督分类器的精度以及训练设置的大小以最大程度地减少EVR。我们从经验上验证了这两个假设,并提出了新的2阶段嘈杂标签训练算法longRemix。我们在嘈杂的标签基准CIFAR-10,CIFAR-100,Webvision,Clotsing1m和Food101-N上测试Longremix。结果表明,我们的Longremix比竞争方法更好,尤其是在高标签噪声问题中。此外,我们的方法在大多数数据集中都能达到最先进的性能。该代码可在https://github.com/filipe-research/longremix上获得。
translated by 谷歌翻译
Deep learning with noisy labels is practically challenging, as the capacity of deep models is so high that they can totally memorize these noisy labels sooner or later during training. Nonetheless, recent studies on the memorization effects of deep neural networks show that they would first memorize training data of clean labels and then those of noisy labels. Therefore in this paper, we propose a new deep learning paradigm called "Co-teaching" for combating with noisy labels. Namely, we train two deep neural networks simultaneously, and let them teach each other given every mini-batch: firstly, each network feeds forward all data and selects some data of possibly clean labels; secondly, two networks communicate with each other what data in this mini-batch should be used for training; finally, each network back propagates the data selected by its peer network and updates itself. Empirical results on noisy versions of MNIST, CIFAR-10 and CIFAR-100 demonstrate that Co-teaching is much superior to the state-of-the-art methods in the robustness of trained deep models. * The first two authors (Bo Han and Quanming Yao) made equal contributions. The implementation is available at https://github.com/bhanML/Co-teaching.32nd Conference on Neural Information Processing Systems (NIPS 2018),
translated by 谷歌翻译
应付嘈杂标签的大多数现有方法通常假定类别分布良好,因此无法应对训练样本不平衡分布的实际情况的能力不足。为此,本文尽早努力通过长尾分配和标签噪声来解决图像分类任务。在这种情况下,现有的噪声学习方法无法正常工作,因为将噪声样本与干净的尾巴类别的样本区分开来是具有挑战性的。为了解决这个问题,我们提出了一个新的学习范式,基于对弱数据和强数据扩展的推论,以筛选嘈杂的样本,并引入休假散布的正则化,以消除公认的嘈杂样本的效果。此外,我们基于在线先验分布中纳入了一种新颖的预测惩罚,以避免对头等阶层的偏见。与现有的长尾分类方法相比,这种机制在实时捕获班级拟合度方面具有优越性。详尽的实验表明,所提出的方法优于解决噪声标签下长尾分类中分布不平衡问题的最先进算法。
translated by 谷歌翻译
在嘈杂标记的数据上进行强大的学习是实际应用中的重要任务,因为标签噪声直接导致深度学习模型的概括不良。现有的标签噪声学习方法通​​常假定培训数据的基础类别是平衡的。但是,现实世界中的数据通常是不平衡的,导致观察到的与标签噪声引起的固有类别分布之间的不一致。分布不一致使标签 - 噪声学习的问题更具挑战性,因为很难将干净的样本与内在尾巴类别的嘈杂样本区分开来。在本文中,我们提出了一个学习框架,用于使用内在长尾数据进行标签 - 噪声学习。具体而言,我们提出了一种称为两阶段双维样品选择(TBS)的可靠样品选择方法,以更好地与嘈杂的样品分开清洁样品,尤其是对于尾巴类别。 TBSS由两个新的分离指标组成,以在每个类别中共同分开样本。对具有内在长尾巴分布的多个嘈杂标记的数据集进行了广泛的实验,证明了我们方法的有效性。
translated by 谷歌翻译
可以将监督学习视为将相关信息从输入数据中提取到特征表示形式。当监督嘈杂时,此过程变得困难,因为蒸馏信息可能无关紧要。实际上,最近的研究表明,网络可以轻松地过度贴合所有标签,包括损坏的标签,因此几乎无法概括以清洁数据集。在本文中,我们专注于使用嘈杂的标签学习的问题,并将压缩归纳偏置引入网络体系结构以减轻这种过度的问题。更确切地说,我们重新审视一个名为辍学的经典正则化及其变体嵌套辍学。辍学可以作为其功能删除机制的压缩约束,而嵌套辍学进一步学习有序的特征表示W.R.T.特征重要性。此外,具有压缩正则化的训练有素的模型与共同教学相结合,以提高性能。从理论上讲,我们在压缩正则化下对目标函数进行偏置变化分解。我们分析了单个模型和共同教学。该分解提供了三个见解:(i)表明过度合适确实是使用嘈杂标签学习的问题; (ii)通过信息瓶颈配方,它解释了为什么提出的特征压缩有助于对抗标签噪声; (iii)它通过将压缩正规化纳入共同教学而带来的性能提升提供了解释。实验表明,我们的简单方法比具有现实世界标签噪声(包括服装1M和Animal-10N)的基准测试标准的最先进方法具有可比性甚至更好的性能。我们的实施可在https://yingyichen-cyy.github.io/compressfatsfeatnoisylabels/上获得。
translated by 谷歌翻译