子图是图中丰富的子结构,并且可以在现实世界任务中部分观察到它们的节点和边缘。在部分观察结果下,现有的节点或子图级消息传播会产生次优表示。在本文中,我们制定了一项新的学习表征的新任务。为了解决此问题,我们建议将部分子图信息(PSI)框架(PSI)框架概括为我们的框架中现有的Infomax模型,包括DGI,Intograph,MVGRL和GraphCl。这些模型最大程度地提高了部分子图的摘要与从节点到完整子图的各种子结构之间的共同信息。此外,我们建议使用$ K $ -HOP PSI的新型两阶段模型,它重建了完整子图的表示,并提高了其从不同局部全球结构中的表现力。在为此问题设计的培训和评估协议下,我们在三个现实世界数据集上进行实验,并证明PSI模型的表现优于基准。
translated by 谷歌翻译
Data-efficient learning on graphs (GEL) is essential in real-world applications. Existing GEL methods focus on learning useful representations for nodes, edges, or entire graphs with ``small'' labeled data. But the problem of data-efficient learning for subgraph prediction has not been explored. The challenges of this problem lie in the following aspects: 1) It is crucial for subgraphs to learn positional features to acquire structural information in the base graph in which they exist. Although the existing subgraph neural network method is capable of learning disentangled position encodings, the overall computational complexity is very high. 2) Prevailing graph augmentation methods for GEL, including rule-based, sample-based, adaptive, and automated methods, are not suitable for augmenting subgraphs because a subgraph contains fewer nodes but richer information such as position, neighbor, and structure. Subgraph augmentation is more susceptible to undesirable perturbations. 3) Only a small number of nodes in the base graph are contained in subgraphs, which leads to a potential ``bias'' problem that the subgraph representation learning is dominated by these ``hot'' nodes. By contrast, the remaining nodes fail to be fully learned, which reduces the generalization ability of subgraph representation learning. In this paper, we aim to address the challenges above and propose a Position-Aware Data-Efficient Learning framework for subgraph neural networks called PADEL. Specifically, we propose a novel node position encoding method that is anchor-free, and design a new generative subgraph augmentation method based on a diffused variational subgraph autoencoder, and we propose exploratory and exploitable views for subgraph contrastive learning. Extensive experiment results on three real-world datasets show the superiority of our proposed method over state-of-the-art baselines.
translated by 谷歌翻译
Nowadays, Multi-purpose Messaging Mobile App (MMMA) has become increasingly prevalent. MMMAs attract fraudsters and some cybercriminals provide support for frauds via black market accounts (BMAs). Compared to fraudsters, BMAs are not directly involved in frauds and are more difficult to detect. This paper illustrates our BMA detection system SGRL (Self-supervised Graph Representation Learning) used in WeChat, a representative MMMA with over a billion users. We tailor Graph Neural Network and Graph Self-supervised Learning in SGRL for BMA detection. The workflow of SGRL contains a pretraining phase that utilizes structural information, node attribute information and available human knowledge, and a lightweight detection phase. In offline experiments, SGRL outperforms state-of-the-art methods by 16.06%-58.17% on offline evaluation measures. We deploy SGRL in the online environment to detect BMAs on the billion-scale WeChat graph, and it exceeds the alternative by 7.27% on the online evaluation measure. In conclusion, SGRL can alleviate label reliance, generalize well to unseen data, and effectively detect BMAs in WeChat.
translated by 谷歌翻译
基于图形神经网络(GNN)的子图表学习在科学进步中表现出广泛的应用,例如对分子结构 - 特质关系和集体细胞功能的预测。特别是,图表增强技术在改善基于图和基于节点的分类任务方面显示出令人鼓舞的结果。尽管如此,在现有的基于GNN的子图表示学习研究中很少探索它们。在这项研究中,我们开发了一种新型的多视图增强机制,以改善子图表示学习模型,从而改善下游预测任务的准确性。我们的增强技术创建了多种子图的变体,并将这些变体嵌入原始图中,以实现高度改善的训练效率,可伸缩性和准确性。几个现实世界和生理数据集的基准实验证明了我们提出的多视图增强技术在子图表学习中的优越性。
translated by 谷歌翻译
在异质图上的自我监督学习(尤其是对比度学习)方法可以有效地摆脱对监督数据的依赖。同时,大多数现有的表示学习方法将异质图嵌入到欧几里得或双曲线的单个几何空间中。这种单个几何视图通常不足以观察由于其丰富的语义和复杂结构而观察到异质图的完整图片。在这些观察结果下,本文提出了一种新型的自我监督学习方法,称为几何对比度学习(GCL),以更好地表示监督数据是不可用时的异质图。 GCL同时观察了从欧几里得和双曲线观点的异质图,旨在强烈合并建模丰富的语义和复杂结构的能力,这有望为下游任务带来更多好处。 GCL通过在局部局部和局部全球语义水平上对比表示两种几何视图之间的相互信息。在四个基准数据集上进行的广泛实验表明,在三个任务上,所提出的方法在包括节点分类,节点群集和相似性搜索在内的三个任务上都超过了强基础,包括无监督的方法和监督方法。
translated by 谷歌翻译
图表表示学习(GRL)对于图形结构数据分析至关重要。然而,大多数现有的图形神经网络(GNNS)严重依赖于标签信息,这通常是在现实世界中获得的昂贵。现有无监督的GRL方法遭受某些限制,例如对单调对比和可扩展性有限的沉重依赖。为了克服上述问题,鉴于最近的图表对比学习的进步,我们通过曲线图介绍了一种新颖的自我监控图形表示学习算法,即通过利用所提出的调整变焦方案来学习节点表示来学习节点表示。具体地,该机制使G-Zoom能够从多个尺度的图表中探索和提取自我监督信号:MICRO(即,节点级别),MESO(即,邻域级)和宏(即,子图级) 。首先,我们通过两个不同的图形增强生成输入图的两个增强视图。然后,我们逐渐地从节点,邻近逐渐为上述三个尺度建立三种不同的对比度,在那里我们最大限度地提高了横跨尺度的图形表示之间的协议。虽然我们可以从微距和宏观视角上从给定图中提取有价值的线索,但是邻域级对比度基于我们的调整后的缩放方案提供了可自定义选项的能力,以便手动选择位于微观和介于微观之间的最佳视点宏观透视更好地理解图数据。此外,为了使我们的模型可扩展到大图,我们采用了并行图形扩散方法来从图形尺寸下解耦模型训练。我们对现实世界数据集进行了广泛的实验,结果表明,我们所提出的模型始终始终优于最先进的方法。
translated by 谷歌翻译
社交机器人被称为社交网络上的自动帐户,这些帐户试图像人类一样行事。尽管图形神经网络(GNNS)已大量应用于社会机器人检测领域,但大量的领域专业知识和先验知识大量参与了最先进的方法,以设计专门的神经网络体系结构,以设计特定的神经网络体系结构。分类任务。但是,在模型设计中涉及超大的节点和网络层,通常会导致过度平滑的问题和缺乏嵌入歧视。在本文中,我们提出了罗斯加斯(Rosgas),这是一种新颖的加强和自我监督的GNN Architecture搜索框架,以适应性地指出了最合适的多跳跃社区和GNN体系结构中的层数。更具体地说,我们将社交机器人检测问题视为以用户为中心的子图嵌入和分类任务。我们利用异构信息网络来通过利用帐户元数据,关系,行为特征和内容功能来展示用户连接。 Rosgas使用多代理的深钢筋学习(RL)机制来导航最佳邻域和网络层的搜索,以分别学习每个目标用户的子图嵌入。开发了一种用于加速RL训练过程的最接近的邻居机制,Rosgas可以借助自我监督的学习来学习更多的判别子图。 5个Twitter数据集的实验表明,Rosgas在准确性,训练效率和稳定性方面优于最先进的方法,并且在处理看不见的样本时具有更好的概括。
translated by 谷歌翻译
最近,最大化的互信息是一种强大的无监测图表表示学习的方法。现有方法通常有效地从拓扑视图中捕获信息但忽略特征视图。为了规避这个问题,我们通过利用功能和拓扑视图利用互信息最大化提出了一种新的方法。具体地,我们首先利用多视图表示学习模块来更好地捕获跨图形上的特征和拓扑视图的本地和全局信息内容。为了模拟由特征和拓扑空间共享的信息,我们使用相互信息最大化和重建损耗最小化开发公共表示学习模块。要明确鼓励图形表示之间的多样性在相同的视图中,我们还引入了一个分歧正则化,以扩大同一视图之间的表示之间的距离。合成和实际数据集的实验证明了集成功能和拓扑视图的有效性。特别是,与先前的监督方法相比,我们所提出的方法可以在无监督的代表和线性评估协议下实现可比或甚至更好的性能。
translated by 谷歌翻译
We present Deep Graph Infomax (DGI), a general approach for learning node representations within graph-structured data in an unsupervised manner. DGI relies on maximizing mutual information between patch representations and corresponding high-level summaries of graphs-both derived using established graph convolutional network architectures. The learnt patch representations summarize subgraphs centered around nodes of interest, and can thus be reused for downstream node-wise learning tasks. In contrast to most prior approaches to unsupervised learning with GCNs, DGI does not rely on random walk objectives, and is readily applicable to both transductive and inductive learning setups. We demonstrate competitive performance on a variety of node classification benchmarks, which at times even exceeds the performance of supervised learning.
translated by 谷歌翻译
图形神经网络(GNNS)最流行的设计范例是1跳消息传递 - 反复反复从1跳邻居聚集特征。但是,1-HOP消息传递的表达能力受Weisfeiler-Lehman(1-WL)测试的界定。最近,研究人员通过同时从节点的K-Hop邻居汇总信息传递到K-HOP消息。但是,尚无分析K-Hop消息传递的表达能力的工作。在这项工作中,我们从理论上表征了K-Hop消息传递的表达力。具体而言,我们首先正式区分了两种k-hop消息传递的内核,它们在以前的作品中经常被滥用。然后,我们通过表明它比1-Hop消息传递更强大,从而表征了K-Hop消息传递的表现力。尽管具有较高的表达能力,但我们表明K-Hop消息传递仍然无法区分一些简单的常规图。为了进一步增强其表现力,我们引入了KP-GNN框架,该框架通过利用每个跳跃中的外围子图信息来改善K-HOP消息。我们证明,KP-GNN可以区分几乎所有常规图,包括一些距离常规图,这些图无法通过以前的距离编码方法来区分。实验结果验证了KP-GNN的表达能力和有效性。 KP-GNN在所有基准数据集中都取得了竞争成果。
translated by 谷歌翻译
由于其独立性与标签及其稳健性的独立性,自我监督的学习最近引起了很多关注。目前关于本主题的研究主要使用诸如图形结构的静态信息,但不能很好地捕获诸如边缘时间戳的动态信息。现实图形通常是动态的,这意味着节点之间的交互发生在特定时间。本文提出了一种自我监督的动态图形表示学习框架(DYSUBC),其定义了一个时间子图对比学学习任务,以同时学习动态图的结构和进化特征。具体地,首先提出了一种新的时间子图采样策略,其将动态图的每个节点作为中心节点提出,并使用邻域结构和边缘时间戳来采样相应的时间子图。然后根据在编码每个子图中的节点之后,根据中心节点上的邻域节点的影响设计子图表示功能。最后,定义了结构和时间对比损失,以最大化节点表示和时间子图表示之间的互信息。五个现实数据集的实验表明(1)DySubc比下游链路预测任务中的两个图形对比学习模型和四个动态图形表示学习模型更好地表现出更好的相关基线,(2)使用时间信息不能使用只有更有效的子图,还可以通过时间对比损失来学习更好的表示。
translated by 谷歌翻译
在本文中,我们提供了一种使用图形神经网络(GNNS)的理论,用于多节点表示学习(我们有兴趣学习一组多个节点的表示)。我们知道GNN旨在学习单节点表示。当我们想学习涉及多个节点的节点集表示时,先前作品中的常见做法是直接将GNN学习的多节点表示与节点集的关节表示。在本文中,我们显示了这种方法的基本限制,即无法捕获节点集中节点之间的依赖性,并且认为直接聚合各个节点表示不会导致多个节点的有效关节表示。然后,我们注意到,以前的一些成功的工作作品用于多节点表示学习,包括密封,距离编码和ID-GNN,所有使用的节点标记。这些方法根据应用GNN之前的与目标节点集的关系,首先标记图中的节点。然后,在标记的图表中获得的节点表示被聚合到节点集表示中。通过调查其内部机制,我们将这些节点标记技术统一到单个和最基本的形式,即标记技巧。我们证明,通过标记技巧,可以获得足够富有表现力的GNN学习最具表现力的节点集表示,因此原则上可以解决节点集的任何联合学习任务。关于一个重要的双节点表示学习任务,链接预测,验证了我们理论的实验。我们的工作建立了使用GNN在节点集上使用GNN进行联合预测任务的理论基础。
translated by 谷歌翻译
Link prediction is a crucial problem in graph-structured data. Due to the recent success of graph neural networks (GNNs), a variety of GNN-based models were proposed to tackle the link prediction task. Specifically, GNNs leverage the message passing paradigm to obtain node representation, which relies on link connectivity. However, in a link prediction task, links in the training set are always present while ones in the testing set are not yet formed, resulting in a discrepancy of the connectivity pattern and bias of the learned representation. It leads to a problem of dataset shift which degrades the model performance. In this paper, we first identify the dataset shift problem in the link prediction task and provide theoretical analyses on how existing link prediction methods are vulnerable to it. We then propose FakeEdge, a model-agnostic technique, to address the problem by mitigating the graph topological gap between training and testing sets. Extensive experiments demonstrate the applicability and superiority of FakeEdge on multiple datasets across various domains.
translated by 谷歌翻译
对比度学习是图表学习中的有效无监督方法,对比度学习的关键组成部分在于构建正和负样本。以前的方法通常利用图中节点的接近度作为原理。最近,基于数据增强的对比度学习方法已进步以显示视觉域中的强大力量,一些作品将此方法从图像扩展到图形。但是,与图像上的数据扩展不同,图上的数据扩展远不那么直观,而且很难提供高质量的对比样品,这为改进留出了很大的空间。在这项工作中,通过引入一个对抗性图视图以进行数据增强,我们提出了一种简单但有效的方法,对抗图对比度学习(ARIEL),以在合理的约束中提取信息性的对比样本。我们开发了一种称为稳定训练的信息正则化的新技术,并使用子图抽样以进行可伸缩。我们通过将每个图形实例视为超级节点,从节点级对比度学习到图级。 Ariel始终优于在现实世界数据集上的节点级别和图形级分类任务的当前图对比度学习方法。我们进一步证明,面对对抗性攻击,Ariel更加强大。
translated by 谷歌翻译
对比学习在图表学习领域表现出了巨大的希望。通过手动构建正/负样本,大多数图对比度学习方法依赖于基于矢量内部产品的相似性度量标准来区分图形表示样品。但是,手工制作的样品构建(例如,图表的节点或边缘的扰动)可能无法有效捕获图形的固有局部结构。同样,基于矢量内部产品的相似性度量标准无法完全利用图形的局部结构来表征图差。为此,在本文中,我们提出了一种基于自适应子图生成的新型对比度学习框架,以实现有效且强大的自我监督图表示学习,并且最佳传输距离被用作子绘图之间的相似性度量。它的目的是通过捕获图的固有结构来生成对比样品,并根据子图的特征和结构同时区分样品。具体而言,对于每个中心节点,通过自适应学习关系权重与相应邻域的节点,我们首先开发一个网络来生成插值子图。然后,我们分别构建来自相同和不同节点的子图的正和负对。最后,我们采用两种类型的最佳运输距离(即Wasserstein距离和Gromov-Wasserstein距离)来构建结构化的对比损失。基准数据集上的广泛节点分类实验验证了我们的图形对比学习方法的有效性。
translated by 谷歌翻译
Graph neural networks (GNNs) have received remarkable success in link prediction (GNNLP) tasks. Existing efforts first predefine the subgraph for the whole dataset and then apply GNNs to encode edge representations by leveraging the neighborhood structure induced by the fixed subgraph. The prominence of GNNLP methods significantly relies on the adhoc subgraph. Since node connectivity in real-world graphs is complex, one shared subgraph is limited for all edges. Thus, the choices of subgraphs should be personalized to different edges. However, performing personalized subgraph selection is nontrivial since the potential selection space grows exponentially to the scale of edges. Besides, the inference edges are not available during training in link prediction scenarios, so the selection process needs to be inductive. To bridge the gap, we introduce a Personalized Subgraph Selector (PS2) as a plug-and-play framework to automatically, personally, and inductively identify optimal subgraphs for different edges when performing GNNLP. PS2 is instantiated as a bi-level optimization problem that can be efficiently solved differently. Coupling GNNLP models with PS2, we suggest a brand-new angle towards GNNLP training: by first identifying the optimal subgraphs for edges; and then focusing on training the inference model by using the sampled subgraphs. Comprehensive experiments endorse the effectiveness of our proposed method across various GNNLP backbones (GCN, GraphSage, NGCF, LightGCN, and SEAL) and diverse benchmarks (Planetoid, OGB, and Recommendation datasets). Our code is publicly available at \url{https://github.com/qiaoyu-tan/PS2}
translated by 谷歌翻译
图形结构的数据集通常具有不规则的图表尺寸和连接,渲染使用最近的数据增强技术,例如混合,困难。为了解决这一挑战,我们在名为曲线图移植的图形级别提供了第一个混合图形增强方法,其在数据空间中混合了不规则图。要在图形的各种尺度上定义,我们的方法将子结构标识为可以保留本地信息的混合单元。由于没有特殊考虑上下文的​​基于混合的方法易于产生噪声样本,因此我们的方法明确地使用节点显着信息来选择有意义的子图并自适应地确定标签。我们在多个图形分类基准数据集中广泛地验证了我们多样化的GNN架构,来自不同尺寸的各种图形域。实验结果显示了我们对其他基本数据增强基线的方法的一致优势。我们还证明了曲线图移植在鲁棒性和模型校准方面提高了性能。
translated by 谷歌翻译
图形神经网络(GNN)在学习强大的节点表示中显示了令人信服的性能,这些表现在保留节点属性和图形结构信息的强大节点表示中。然而,许多GNNS在设计有更深的网络结构或手柄大小的图形时遇到有效性和效率的问题。已经提出了几种采样算法来改善和加速GNN的培训,但他们忽略了解GNN性能增益的来源。图表数据中的信息的测量可以帮助采样算法来保持高价值信息,同时消除冗余信息甚至噪声。在本文中,我们提出了一种用于GNN的公制引导(MEGUIDE)子图学习框架。 MEGUIDE采用两种新颖的度量:功能平滑和连接失效距离,以指导子图采样和迷你批次的培训。功能平滑度专为分析节点的特征而才能保留最有价值的信息,而连接失败距离可以测量结构信息以控制子图的大小。我们展示了MEGUIDE在多个数据集上培训各种GNN的有效性和效率。
translated by 谷歌翻译
关于图表的深度学习最近吸引了重要的兴趣。然而,大多数作品都侧重于(半)监督学习,导致缺点包括重标签依赖,普遍性差和弱势稳健性。为了解决这些问题,通过良好设计的借口任务在不依赖于手动标签的情况下提取信息知识的自我监督学习(SSL)已成为图形数据的有希望和趋势的学习范例。与计算机视觉和自然语言处理等其他域的SSL不同,图表上的SSL具有独家背景,设计理念和分类。在图表的伞下自我监督学习,我们对采用图表数据采用SSL技术的现有方法及时及全面的审查。我们构建一个统一的框架,数学上正式地规范图表SSL的范例。根据借口任务的目标,我们将这些方法分为四类:基于生成的,基于辅助性的,基于对比的和混合方法。我们进一步描述了曲线图SSL在各种研究领域的应用,并总结了绘图SSL的常用数据集,评估基准,性能比较和开源代码。最后,我们讨论了该研究领域的剩余挑战和潜在的未来方向。
translated by 谷歌翻译
无监督的图形表示学习是图形数据的非琐碎主题。在结构化数据的无监督代表学习中对比学习和自我监督学习的成功激发了图表上的类似尝试。使用对比损耗的当前无监督的图形表示学习和预培训主要基于手工增强图数据之间的对比度。但是,由于不可预测的不变性,图数据增强仍然没有很好地探索。在本文中,我们提出了一种新颖的协作图形神经网络对比学习框架(CGCL),它使用多个图形编码器来观察图形。不同视图观察的特征充当了图形编码器之间对比学习的图表增强,避免了任何扰动以保证不变性。 CGCL能够处理图形级和节点级表示学习。广泛的实验表明CGCL在无监督的图表表示学习中的优势以及图形表示学习的手工数据增强组合的非必要性。
translated by 谷歌翻译