估计可驱动表面和周围环境的3D结构是辅助和自主驾驶的重要任务。通过使用昂贵的3D传感器(例如LIDAR)或通过深度学习预测点深度来常见的是。而不是遵循现有的方法,我们提出道路平面视差关注网络(RPANET),这是一种基于平面视差的单眼图像序列的新型神经网络,这是驾驶场景中常见的道路平面几何形状的充分优势。 RPANET需要一对图像由道路平面的定址为对齐的图像,作为输入,输出3D重建的$ \ Gamma $地图。除了估计深度或高度之外,$ \ Gamma $ MAP的可能性在两个连续帧之间构造二维变换,同时可以容易地导出深度或高度。通过使用道路平面作为参考的连续帧,可以从平面视差和残余图像位移估计3D结构。此外,为了使网络更好地了解由平面视差引起的位移,我们引入了一种新颖的跨关注模块。我们从Waymo Open DataSet中示机数据并构建与平面视差相关的数据。在采样的数据集上进行综合实验,以展示我们在具有挑战性的情况下的方法的三维重建准确性。
translated by 谷歌翻译
来自运动(SFM)的结构和地面相同估计对自动驾驶和其他机器人应用至关重要。最近,使用深神经网络分别用于SFM和同住估计的深度神经网络。然而,直接应用用于地面平面的现有方法可能会失败,因为道路通常是场景的一小部分。此外,深度SFM方法的性能仍然不如传统方法。在本文中,我们提出了一种方法,了解到以端到端的方式解决这两种问题,提高两者的性能。所提出的网络由深度CNN,姿势CNN和地面CNN组成。分别深度CNN和姿势 - CNN估计致密深度图和自我运动,求解SFM,而姿势 - CNN和地下CNN,接着是相同的相同层求解地面估计问题。通过强制SFM和同情侣估计结果之间的一致性,可以使用除了由搁板分段器提供的道路分割之外的光度损耗和单独的损耗来训练整个网络以结束到结束。综合实验是在基蒂基准上进行的,与各种最先进的方法相比,展示了有希望的结果。
translated by 谷歌翻译
作为许多自主驾驶和机器人活动的基本组成部分,如自我运动估计,障碍避免和场景理解,单眼深度估计(MDE)引起了计算机视觉和机器人社区的极大关注。在过去的几十年中,已经开发了大量方法。然而,据我们所知,对MDE没有全面调查。本文旨在通过审查1970年至2021年之间发布的197个相关条款来弥补这一差距。特别是,我们为涵盖各种方法的MDE提供了全面的调查,介绍了流行的绩效评估指标并汇总公开的数据集。我们还总结了一些代表方法的可用开源实现,并比较了他们的表演。此外,我们在一些重要的机器人任务中审查了MDE的应用。最后,我们通过展示一些有希望的未来研究方向来结束本文。预计本调查有助于读者浏览该研究领域。
translated by 谷歌翻译
在接受高质量的地面真相(如LiDAR数据)培训时,监督的学习深度估计方法可以实现良好的性能。但是,LIDAR只能生成稀疏的3D地图,从而导致信息丢失。每个像素获得高质量的地面深度数据很难获取。为了克服这一限制,我们提出了一种新颖的方法,将有前途的平面和视差几何管道与深度信息与U-NET监督学习网络相结合的结构信息结合在一起,与现有的基于流行的学习方法相比,这会导致定量和定性的改进。特别是,该模型在两个大规模且具有挑战性的数据集上进行了评估:Kitti Vision Benchmark和CityScapes数据集,并在相对错误方面取得了最佳性能。与纯深度监督模型相比,我们的模型在薄物体和边缘的深度预测上具有令人印象深刻的性能,并且与结构预测基线相比,我们的模型的性能更加强大。
translated by 谷歌翻译
尽管现有的单眼深度估计方法取得了长足的进步,但由于网络的建模能力有限和规模歧义问题,预测单个图像的准确绝对深度图仍然具有挑战性。在本文中,我们介绍了一个完全视觉上的基于注意力的深度(Vadepth)网络,在该网络中,将空间注意力和通道注意都应用于所有阶段。通过在远距离沿空间和通道维度沿空间和通道维度的特征的依赖关系连续提取,Vadepth网络可以有效地保留重要的细节并抑制干扰特征,以更好地感知场景结构,以获得更准确的深度估计。此外,我们利用几何先验来形成规模约束,以进行比例感知模型培训。具体而言,我们使用摄像机和由地面点拟合的平面之间的距离构建了一种新颖的规模感知损失,该平面与图像底部中间的矩形区域的像素相对应。 Kitti数据集的实验结果表明,该体系结构达到了最新性能,我们的方法可以直接输出绝对深度而无需后处理。此外,我们在Seasondepth数据集上的实验还证明了我们模型对多个看不见的环境的鲁棒性。
translated by 谷歌翻译
通过探索跨视图一致性,例如,光度计一致性和3D点云的一致性,在自我监督的单眼深度估计(SS-MDE)中取得了显着进步。但是,它们非常容易受到照明差异,遮挡,无纹理区域以及移动对象的影响,使它们不够强大,无法处理各种场景。为了应对这一挑战,我们在本文中研究了两种强大的跨视图一致性。首先,相邻帧之间的空间偏移场是通过通过可变形对齐来从其邻居重建参考框架来获得的,该比对通过深度特征对齐(DFA)损失来对齐时间深度特征。其次,计算每个参考框架及其附近框架的3D点云并转换为体素空间,在其中计算每个体素中的点密度并通过体素密度比对(VDA)损耗对齐。通过这种方式,我们利用了SS-MDE的深度特征空间和3D体素空间的时间连贯性,将“点对点”对齐范式转移到“区域到区域”。与光度一致性损失以及刚性点云对齐损失相比,由于深度特征的强大代表能力以及对上述挑战的素密度的高公差,提出的DFA和VDA损失更加强大。几个户外基准的实验结果表明,我们的方法的表现优于当前最新技术。广泛的消融研究和分析验证了拟议损失的有效性,尤其是在具有挑战性的场景中。代码和型号可在https://github.com/sunnyhelen/rcvc-depth上找到。
translated by 谷歌翻译
在现有方法中,LIDAR的探测器显示出卓越的性能,但视觉探测器仍被广泛用于其价格优势。从惯例上讲,视觉检验的任务主要依赖于连续图像的输入。但是,探测器网络学习图像提供的异性几何信息非常复杂。在本文中,将伪LIDAR的概念引入了探测器中以解决此问题。伪LIDAR点云背面项目由图像生成的深度图中的3D点云,这改变了图像表示的方式。与立体声图像相比,立体声匹配网络生成的伪lidar点云可以得到显式的3D坐标。由于在3D空间中发生了6个自由度(DOF)姿势转换,因此伪宽点云提供的3D结构信息比图像更直接。与稀疏的激光雷达相比,伪驱动器具有较密集的点云。为了充分利用伪LIDAR提供的丰富点云信息,采用了投射感知的探测管道。以前的大多数基于激光雷达的算法从点云中采样了8192点,作为探视网络的输入。投影感知的密集探测管道采用从图像产生的所有伪lidar点云,除了误差点作为网络的输入。在图像中充分利用3D几何信息时,图像中的语义信息也用于探视任务中。 2D-3D的融合是在仅基于图像的进程中实现的。 Kitti数据集的实验证明了我们方法的有效性。据我们所知,这是使用伪LIDAR的第一种视觉探光法。
translated by 谷歌翻译
以视觉为中心的BEV感知由于其固有的优点,最近受到行业和学术界的关注,包括展示世界自然代表和融合友好。随着深度学习的快速发展,已经提出了许多方法来解决以视觉为中心的BEV感知。但是,最近没有针对这个小说和不断发展的研究领域的调查。为了刺激其未来的研究,本文对以视觉为中心的BEV感知及其扩展进行了全面调查。它收集并组织了最近的知识,并对常用算法进行了系统的综述和摘要。它还为几项BEV感知任务提供了深入的分析和比较结果,从而促进了未来作品的比较并激发了未来的研究方向。此外,还讨论了经验实现细节并证明有利于相关算法的开发。
translated by 谷歌翻译
Photometric differences are widely used as supervision signals to train neural networks for estimating depth and camera pose from unlabeled monocular videos. However, this approach is detrimental for model optimization because occlusions and moving objects in a scene violate the underlying static scenario assumption. In addition, pixels in textureless regions or less discriminative pixels hinder model training. To solve these problems, in this paper, we deal with moving objects and occlusions utilizing the difference of the flow fields and depth structure generated by affine transformation and view synthesis, respectively. Secondly, we mitigate the effect of textureless regions on model optimization by measuring differences between features with more semantic and contextual information without adding networks. In addition, although the bidirectionality component is used in each sub-objective function, a pair of images are reasoned about only once, which helps reduce overhead. Extensive experiments and visual analysis demonstrate the effectiveness of the proposed method, which outperform existing state-of-the-art self-supervised methods under the same conditions and without introducing additional auxiliary information.
translated by 谷歌翻译
深度完成旨在预测从深度传感器(例如Lidars)中捕获的极稀疏图的密集像素深度。它在各种应用中起着至关重要的作用,例如自动驾驶,3D重建,增强现实和机器人导航。基于深度学习的解决方案已经证明了这项任务的最新成功。在本文中,我们首次提供了全面的文献综述,可帮助读者更好地掌握研究趋势并清楚地了解当前的进步。我们通过通过对现有方法进行分类的新型分类法提出建议,研究网络体系结构,损失功能,基准数据集和学习策略的设计方面的相关研究。此外,我们在包括室内和室外数据集(包括室内和室外数据集)上进行了三个广泛使用基准测试的模型性能进行定量比较。最后,我们讨论了先前作品的挑战,并为读者提供一些有关未来研究方向的见解。
translated by 谷歌翻译
自我监督的学习已经为单眼深度估计显示出非常有希望的结果。场景结构和本地细节都是高质量深度估计的重要线索。最近的作品遭受了场景结构的明确建模,并正确处理细节信息,这导致了预测结果中的性能瓶颈和模糊人工制品。在本文中,我们提出了具有两个有效贡献的通道 - 明智的深度估计网络(Cadepth-Net):1)结构感知模块采用自我关注机制来捕获远程依赖性并聚合在信道中的识别特征尺寸,明确增强了场景结构的感知,获得了更好的场景理解和丰富的特征表示。 2)细节强调模块重新校准通道 - 方向特征映射,并选择性地强调信息性功能,旨在更有效地突出至关重要的本地细节信息和熔断器不同的级别功能,从而更精确,更锐化深度预测。此外,广泛的实验验证了我们方法的有效性,并表明我们的模型在基蒂基准和Make3D数据集中实现了最先进的结果。
translated by 谷歌翻译
生成三维城市模型迅速对许多应用是至关重要的。单眼高度估计是最有效的,及时的方式来获得大型几何信息之一。但是,现有的工作主要集中在训练和测试模型中使用的数据集不偏不倚,不与现实世界的应用以及对齐。因此,我们提出了一个新的基准数据集,研究高度估计模型的可转移性在跨数据集的设置。为此,我们首先设计和构建跨数据集上的高度估计任务迁移学习了大规模的基准数据集。这个基准测试数据集包括一个新提出的大规模合成数据集,新集真实世界的数据集,并从不同的城市四个现有的数据集。接下来,两个新的实验方案,零次和几个次跨数据集传输,设计。对于一些次跨数据集的转移,我们增强了基于窗口的变压器与拟议规模变形卷积模块来处理严重的尺度变化问题。为了改善零射门跨数据集设置深模型的普遍性,基于最大规范化变压器网被设计成分离从绝对高度的相对高度的地图。实验结果表明在传统的和跨数据集传送设置两者所提出的方法的有效性。该数据集和代码是公开的,在https://thebenchmarkh.github.io/。
translated by 谷歌翻译
从单眼图像中学习的自我监督深度学习通常依赖于暂时相邻图像帧之间的2D像素光度关系。但是,他们既没有完全利用3D点的几何对应关系,也没有有效地应对闭塞或照明不一致引起的光度扭曲中的歧义。为了解决这些问题,这项工作提出了密度量构建网络(DEVNET),这是一种新型的自我监管的单眼深度学习框架,可以考虑3D空间信息,并利用相邻的相机flustums中的更强的几何约束。我们的DEVNET不是直接从单个图像中回归像素值,而是将摄像头划分为多个平行的平面,并预测每个平面上的点闭塞概率密度。最终的深度图是通过沿相应射线集成密度来生成的。在训练过程中,引入了新颖的正则化策略和损失功能,以减轻光度歧义和过度拟合。如果没有明显放大的模型参数的大小或运行时间,DEVNET在Kitti-2015室外数据集和NYU-V2室内数据集上均优于几个代表性基准。特别是,在深度估计的任务中,在Kitti-2015和NYU-V2上,DEVNET均减少了4%的根平方。代码可在https://github.com/gitkaichenzhou/devnet上找到。
translated by 谷歌翻译
现代计算机视觉已超越了互联网照片集的领域,并进入了物理世界,通过非结构化的环境引导配备摄像头的机器人和自动驾驶汽车。为了使这些体现的代理与现实世界对象相互作用,相机越来越多地用作深度传感器,重建了各种下游推理任务的环境。机器学习辅助的深度感知或深度估计会预测图像中每个像素的距离。尽管已经在深入估算中取得了令人印象深刻的进步,但仍然存在重大挑战:(1)地面真相深度标签很难大规模收集,(2)通常认为相机信息是已知的,但通常是不可靠的,并且(3)限制性摄像机假设很常见,即使在实践中使用了各种各样的相机类型和镜头。在本论文中,我们专注于放松这些假设,并描述将相机变成真正通用深度传感器的最终目标的贡献。
translated by 谷歌翻译
深度估计,视觉探测器(VO)和Bird's-eye-view(BEV)场景布局估计提出了三个关键任务,这是驾驶场景感知的三个关键任务,这对于自动驾驶中运动计划和导航至关重要。尽管它们是彼此互补的,但先前的工作通常专注于每个任务,并且很少处理所有三个任务。一种幼稚的方法是以顺序或平行的方式独立实现它们,但是有很多缺点,即1)深度和vo结果遭受了固有的规模歧义问题; 2)BEV布局是从前视图像直接预测的,而无需使用任何与深度相关的信息,尽管深度图包含用于推断场景布局的有用几何线索。在本文中,我们通过提出一个名为jperceiver的新型关节感知框架来解决这些问题,该框架可以同时估算从单眼视频序列中估算尺度感知的深度和vo以及BEV布局。它利用了跨视图几何变换(CGT),以基于精心设计的量表损失来传播从道路布局到深度和VO的绝对尺度。同时,设计了一个跨视图和跨模式转移(CCT)模块,以通过注意机制利用深度线索来用于推理道路和车辆布局。可以以端到端的多任务学习方式对JPERCEIVER进行培训,其中CGT量表损失和CCT模块可以促进任务间知识转移以使每个任务的功能学习受益。关于Argoverse,Nuscenes和Kitti的实验表明,在准确性,模型大小和推理速度方面,JPEREVER在上述所有三个任务上的优越性。代码和模型可在〜\ href {https://github.com/sunnyhelen/jperceiver} {https://github.com/sunnyhelen/jperceiver}中获得。
translated by 谷歌翻译
现有的单眼深度估计方法在不同的场景中实现了出色的鲁棒性,但它们只能检索仿射不变的深度,最多可达到未知的规模和变化。但是,在一些基于视频的场景中,例如视频中的视频深度估计和3D场景重建,驻留在人均预测中的未知量表和偏移可能会导致深度不一致。为了解决这个问题,我们提出了一种局部加权的线性回归方法,以恢复比例并以非常稀疏的锚点的转移,从而确保沿连续帧的比例一致性。广泛的实验表明,我们的方法可以在几个零击基准测试中最多将现有最新方法的性能提高50%。此外,我们合并了超过630万个RGBD图像,以训练强大而健壮的深度模型。我们产生的Resnet50-Backbone模型甚至胜过最先进的DPT VIT-LALGE模型。结合基于几何的重建方法,我们制定了一种新的密集3D场景重建管道,该管道受益于稀疏点的比例一致性和单眼方法的鲁棒性。通过对视频进行简单的人均预测,可以恢复准确的3D场景形状。
translated by 谷歌翻译
3D场景流动表征了当前时间的点如何流到3D欧几里得空间中的下一次,该空间具有自主推断场景中所有对象的非刚性运动的能力。从图像估算场景流的先前方法具有局限性,该方法通过分别估计光流和差异来划分3D场景流的整体性质。学习3D场景从点云流动也面临着综合数据和真实数据与LIDAR点云的稀疏性之间差距的困难。在本文中,利用生成的密集深度图来获得显式的3D坐标,该坐标可直接从2D图像中学习3D场景流。通过将2D像素的密度性质引入3D空间,可以改善预测场景流的稳定性。通过统计方法消除了生成的3D点云中的离群值,以削弱噪声点对3D场景流估计任务的影响。提出了差异一致性损失,以实现3D场景流的更有效的无监督学习。比较了现实世界图像上3D场景流的自我监督学习方法与在综合数据集中学习的多种方法和在LIDAR点云上学习的方法。显示多个场景流量指标的比较可以证明引入伪LIDAR点云到场景流量估计的有效性和优势。
translated by 谷歌翻译
光流估计是自动驾驶和机器人系统系统中的一项基本任务,它可以在时间上解释流量场景。自动驾驶汽车显然受益于360 {\ deg}全景传感器提供的超宽视野(FOV)。但是,由于全景相机的独特成像过程,专为针孔图像设计的模型不会令人满意地概括为360 {\ deg}全景图像。在本文中,我们提出了一个新颖的网络框架 - panoflow,以学习全景图像的光流。为了克服全景转化中等应角投影引起的扭曲,我们设计了一种流动失真增强(FDA)方法,其中包含径向流量失真(FDA-R)或等骨流量失真(FDA-E)。我们进一步研究了全景视频的环状光流的定义和特性,并通过利用球形图像的环状来推断360 {\ deg}光流并将大型位移转换为相对小的位移,从而提出了环状流量估计(CFE)方法移位。 Panoflow适用于任何现有的流量估计方法,并从狭窄的FOL流量估计的进度中受益。此外,我们创建并释放基于CARLA的合成全景数据集Flow360,以促进训练和定量分析。 Panoflow在公共Omniflownet和已建立的Flow360基准中实现了最先进的表现。我们提出的方法将Flow360上的端点误差(EPE)降低了27.3%。在Omniflownet上,Panoflow获得了3.17像素的EPE,从最佳发布的结果中降低了55.5%的误差。我们还通过收集工具和公共现实世界中的全球数据集对我们的方法进行定性验证我们的方法,这表明对现实世界导航应用程序的强大潜力和稳健性。代码和数据集可在https://github.com/masterhow/panoflow上公开获取。
translated by 谷歌翻译
近年来,尤其是在户外环境中,自我监督的单眼深度估计已取得了重大进展。但是,在大多数现有数据被手持设备捕获的室内场景中,深度预测结果无法满足。与室外环境相比,使用自我监督的方法估算室内环境的单眼视频深度,导致了两个额外的挑战:(i)室内视频序列的深度范围在不同的框架上有很大变化,使深度很难进行。网络以促进培训的一致深度线索; (ii)用手持设备记录的室内序列通常包含更多的旋转运动,这使姿势网络难以预测准确的相对摄像头姿势。在这项工作中,我们通过对这些挑战进行特殊考虑并巩固了一系列良好实践,以提高自我监督的单眼深度估计室内环境的表现,从而提出了一种新颖的框架单声道++。首先,提出了具有基于变压器的比例回归网络的深度分解模块,以明确估算全局深度尺度因子,预测的比例因子可以指示最大深度值。其次,我们不像以前的方法那样使用单阶段的姿势估计策略,而是建议利用残留姿势估计模块来估计相对摄像机在连续迭代的跨帧中构成。第三,为了为我们的残留姿势估计模块纳入广泛的坐标指南,我们建议直接在输入上执行坐标卷积编码,以实现姿势网络。提出的方法在各种基准室内数据集(即Euroc Mav,Nyuv2,扫描仪和7片)上进行了验证,证明了最先进的性能。
translated by 谷歌翻译
鉴于其经济性与多传感器设置相比,从单眼输入中感知的3D对象对于机器人系统至关重要。它非常困难,因为单个图像无法提供预测绝对深度值的任何线索。通过双眼方法进行3D对象检测,我们利用了相机自我运动提供的强几何结构来进行准确的对象深度估计和检测。我们首先对此一般的两视案例进行了理论分析,并注意两个挑战:1)来自多个估计的累积错误,这些估计使直接预测棘手; 2)由静态摄像机和歧义匹配引起的固有难题。因此,我们建立了具有几何感知成本量的立体声对应关系,作为深度估计的替代方案,并以单眼理解进一步补偿了它,以解决第二个问题。我们的框架(DFM)命名为深度(DFM),然后使用已建立的几何形状将2D图像特征提升到3D空间并检测到其3D对象。我们还提出了一个无姿势的DFM,以使其在摄像头不可用时可用。我们的框架在Kitti基准测试上的优于最先进的方法。详细的定量和定性分析也验证了我们的理论结论。该代码将在https://github.com/tai-wang/depth-from-motion上发布。
translated by 谷歌翻译