使用传感器的智能房屋中的监测行为可以对独立能力和居民长期健康的变化提供洞察。被动红外运动传感器(PIRS)是标准的,但可能无法准确跟踪移动的全部持续时间。它们还需要视线检测可以限制性能的运动,并确保它们必须对居民可见。频道状态信息(CSI)是一种低成本,无线电感测形式,可以监控运动,而且提供生成丰富数据的机会。我们开发了一种新颖的自我校准运动检测系统,它使用CSI数据收集和处理在股票覆盆子PI 4上。该系统利用CSI帧之间的相关性,我们使用我们的算法执行方差分析来准确测量整个时期居民的运动。我们展示了这种方法在若干现实世界环境中的有效性。进行的实验表明,对于不同位置的不同强度的运动示例,可以精确地检测活动开始和结束时间。
translated by 谷歌翻译
低成本毫米波(MMWAVE)通信和雷达设备的商业可用性开始提高消费市场中这种技术的渗透,为第五代(5G)的大规模和致密的部署铺平了道路(5G) - 而且以及6G网络。同时,普遍存在MMWAVE访问将使设备定位和无设备的感测,以前所未有的精度,特别是对于Sub-6 GHz商业级设备。本文使用MMWAVE通信和雷达设备在基于设备的定位和无设备感应中进行了现有技术的调查,重点是室内部署。我们首先概述关于MMWAVE信号传播和系统设计的关键概念。然后,我们提供了MMWaves启用的本地化和感应方法和算法的详细说明。我们考虑了在我们的分析中的几个方面,包括每个工作的主要目标,技术和性能,每个研究是否达到了一定程度的实现,并且该硬件平台用于此目的。我们通过讨论消费者级设备的更好算法,密集部署的数据融合方法以及机器学习方法的受过教育应用是有前途,相关和及时的研究方向的结论。
translated by 谷歌翻译
In this article we present SHARP, an original approach for obtaining human activity recognition (HAR) through the use of commercial IEEE 802.11 (Wi-Fi) devices. SHARP grants the possibility to discern the activities of different persons, across different time-spans and environments. To achieve this, we devise a new technique to clean and process the channel frequency response (CFR) phase of the Wi-Fi channel, obtaining an estimate of the Doppler shift at a radio monitor device. The Doppler shift reveals the presence of moving scatterers in the environment, while not being affected by (environment-specific) static objects. SHARP is trained on data collected as a person performs seven different activities in a single environment. It is then tested on different setups, to assess its performance as the person, the day and/or the environment change with respect to those considered at training time. In the worst-case scenario, it reaches an average accuracy higher than 95%, validating the effectiveness of the extracted Doppler information, used in conjunction with a learning algorithm based on a neural network, in recognizing human activities in a subject and environment independent way. The collected CFR dataset and the code are publicly available for replicability and benchmarking purposes.
translated by 谷歌翻译
对医疗保健监控的远程工具的需求从未如此明显。摄像机测量生命体征利用成像装置通过分析人体的图像来计算生理变化。建立光学,机器学习,计算机视觉和医学的进步这些技术以来的数码相机的发明以来已经显着进展。本文介绍了对生理生命体征的相机测量综合调查,描述了它们可以测量的重要标志和实现所做的计算技术。我涵盖了临床和非临床应用以及这些应用需要克服的挑战,以便从概念上推进。最后,我描述了对研究社区可用的当前资源(数据集和代码),并提供了一个全面的网页(https://cameravitals.github.io/),其中包含这些资源的链接以及其中引用的所有文件的分类列表文章。
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
由于照顾不断增长的老年人口的医疗和财务需求,对跌倒的及时可靠发现是一个大型且快速增长的研究领域。在过去的20年中,高质量硬件(高质量传感器和AI微芯片)和软件(机器学习算法)技术的可用性通过为开发人员提供开发此类系统的功能,从而成为这项研究的催化剂。这项研究开发了多个应用组件,以研究秋季检测系统的发展挑战和选择,并为未来的研究提供材料。使用此方法开发的智能应用程序通过秋季检测模型实验和模型移动部署的结果验证。总体上表现最好的模型是标准化的RESNET152,并带有2S窗口尺寸的调整数据集,可实现92.8%的AUC,7.28%的灵敏度和98.33%的特异性。鉴于这些结果很明显,加速度计和心电图传感器对秋季检测有益,并允许跌倒和其他活动之间的歧视。由于所得数据集中确定的弱点,这项研究为改进的空间留下了很大的改进空间。这些改进包括在跌落的临界阶段使用标签协议,增加数据集样品的数量,改善测试主题表示形式,并通过频域预处理进行实验。
translated by 谷歌翻译
5G无线技术和社会经济转型的最新进展带来了传感器应用的范式转移。 Wi-Fi信号表明其时间变化与身体运动之间存在很强的相关性,可以利用这些变化来识别人类活动。在本文中,我们证明了基于时间尺度Wi-Fi通道状态信息的自由互助人与人类相互作用识别方法的认知能力。所检查的共同活动是稳定的,接近,离职的,握手的,高五,拥抱,踢(左腿),踢(右腿),指向(左手),指向(右手),拳打(左手),打孔(右手)和推动。我们探索并提出了一个自我发项的双向封盖复发性神经网络模型,以从时间序列数据中对13种人类到人类的相互作用类型进行分类。我们提出的模型可以识别两个主题对相互作用,最大基准精度为94%。这已经扩展了十对对象,该对象对围绕交互 - 转变区域的分类得到了改善,从而确保了88%的基准精度。同样,使用PYQT5 Python模块开发了可执行的图形用户界面(GUI),以实时显示总体相互交流识别过程。最后,我们简要地讨论了有关残障的可能解决方案,这些解决方案导致了研究期间观察到的缩减。这种Wi-Fi渠道扰动模式分析被认为是一种有效,经济和隐私友好的方法,可在相互的人际关系识别中用于室内活动监测,监视系统,智能健康监测系统和独立的辅助生活。
translated by 谷歌翻译
第五代(5G)网络和超越设想巨大的东西互联网(物联网)推出,以支持延长现实(XR),增强/虚拟现实(AR / VR),工业自动化,自主驾驶和智能所有带来的破坏性应用一起占用射频(RF)频谱的大规模和多样化的IOT设备。随着频谱嘎嘎和吞吐量挑战,这种大规模的无线设备暴露了前所未有的威胁表面。 RF指纹识别是预约的作为候选技术,可以与加密和零信任安全措施相结合,以确保无线网络中的数据隐私,机密性和完整性。在未来的通信网络中,在这项工作中,在未来的通信网络中的相关性,我们对RF指纹识别方法进行了全面的调查,从传统观点到最近的基于深度学习(DL)的算法。现有的调查大多专注于无线指纹方法的受限制呈现,然而,许多方面仍然是不可能的。然而,在这项工作中,我们通过解决信号智能(SIGINT),应用程序,相关DL算法,RF指纹技术的系统文献综述来缓解这一点,跨越过去二十年的RF指纹技术的系统文献综述,对数据集和潜在研究途径的讨论 - 必须以百科全书的方式阐明读者的必要条件。
translated by 谷歌翻译
Human Activity Recognition (HAR) is an emerging technology with several applications in surveillance, security, and healthcare sectors. Noninvasive HAR systems based on Wi-Fi Channel State Information (CSI) signals can be developed leveraging the quick growth of ubiquitous Wi-Fi technologies, and the correlation between CSI dynamics and body motions. In this paper, we propose Principal Component-based Wavelet Convolutional Neural Network (or PCWCNN) -- a novel approach that offers robustness and efficiency for practical real-time applications. Our proposed method incorporates two efficient preprocessing algorithms -- the Principal Component Analysis (PCA) and the Discrete Wavelet Transform (DWT). We employ an adaptive activity segmentation algorithm that is accurate and computationally light. Additionally, we used the Wavelet CNN for classification, which is a deep convolutional network analogous to the well-studied ResNet and DenseNet networks. We empirically show that our proposed PCWCNN model performs very well on a real dataset, outperforming existing approaches.
translated by 谷歌翻译
自动化驾驶系统(广告)开辟了汽车行业的新领域,为未来的运输提供了更高的效率和舒适体验的新可能性。然而,在恶劣天气条件下的自主驾驶已经存在,使自动车辆(AVS)长时间保持自主车辆(AVS)或更高的自主权。本文评估了天气在分析和统计方式中为广告传感器带来的影响和挑战,并对恶劣天气条件进行了解决方案。彻底报道了关于对每种天气的感知增强的最先进技术。外部辅助解决方案如V2X技术,当前可用的数据集,模拟器和天气腔室的实验设施中的天气条件覆盖范围明显。通过指出各种主要天气问题,自主驾驶场目前正在面临,近年来审查硬件和计算机科学解决方案,这项调查概述了在不利的天气驾驶条件方面的障碍和方向的障碍和方向。
translated by 谷歌翻译
评估胎儿和母亲的健康对于预防和识别怀孕可能的并发症至关重要。本文重点介绍了母亲自己能够用最小的监督和胎儿和产妇健康有效地使用的装置,同时安全,舒适,易于使用。所提出的设备使用母亲子宫内的单个加速度计的带以记录所需信息。该设备预计将在长期长期监测母亲和胎儿,并提供具有有用信息的医疗专业人员,否则他们将由于目前进行健康监测的频率低频率而忽略。本文表明,即使在存在温和的干扰情况下,母亲和胎儿运动的呼吸信息的同时测量实际上是可能的,如果预计该设备延长延长,则需要考虑该装置。
translated by 谷歌翻译
对医疗保健和生物医学应用的关键,呼吸监测通常在实践中使用可穿戴传感器,由于它们与人体直接接触而导致不便。因此,研究人员一直在不断寻找免费的接触替代品。尽管如此,现有的无联系设计主要需要人类受试者保持静止,在正常环境中大大限制了身体运动不可避免的日常环境中的收养。幸运的是,透射频率(RF)使能无接触感测,但通过传统过滤不可分割的运动干扰,可以在深度学习的帮助下提供蒸馏呼吸波形的潜力。为了实现这一潜力,我们在身体运动下引入了更多内容以进行细粒度的呼吸监测。更多-fi利用IR-UWB雷达来实现无接触感测,并充分利用复杂的雷达信号进行数据增强。更多-Fi的核心是一种新颖的变分编码器解码器网络;它旨在单独用以非线性方式通过身体运动调节的呼吸波形。我们具有12个受试者和66小时数据的实验表明,尽管身体运动引起的干扰,但仍然需要更准确地恢复呼吸波。我们还讨论了肺部疾病诊断的潜在应用。
translated by 谷歌翻译
基于相机的非接触式光电子溶血性描绘是指一组流行的非接触生理测量技术。目前的最先进的神经模型通常以伴随金标准生理测量的视频以监督方式培训。但是,它们通常概括域名差别示例(即,与培训集中的视频不同)。个性化模型可以帮助提高型号的概括性,但许多个性化技术仍然需要一些金标准数据。为了帮助缓解这一依赖性,在本文中,我们展示了一种名为Mobilememon的新型移动感应系统,该系统是第一个移动个性化远程生理传感系统,它利用智能手机上的前后相机,为培训产生高质量的自我监督标签个性化非接触式相机的PPG模型。为了评估MobilemeLephys的稳健性,我们使用39名参与者进行了一个用户学习,他们在不同的移动设备下完成了一组任务,照明条件/强度,运动任务和皮肤类型。我们的研究结果表明,Mobilephys显着优于最先进的设备监督培训和几次拍摄适应方法。通过广泛的用户研究,我们进一步检查了Mobilephys如何在复杂的真实环境中执行。我们设想,从我们所提出的双摄像机移动传感系统产生的校准或基于相机的非接触式PPG模型将为智能镜,健身和移动健康应用等许多未来应用打开门。
translated by 谷歌翻译
人们的个人卫生习惯在每日生活方式中照顾身体和健康的状况。保持良好的卫生习惯不仅减少了患疾病的机会,而且还可以降低社区中传播疾病的风险。鉴于目前的大流行,每天的习惯,例如洗手或定期淋浴,在人们中至关重要,尤其是对于单独生活在家里或辅助生活设施中的老年人。本文提出了一个新颖的非侵入性框架,用于使用我们采用机器学习技术的振动传感器监测人卫生。该方法基于地球通传感器,数字化器和实用外壳中具有成本效益的计算机板的组合。监测日常卫生常规可能有助于医疗保健专业人员积极主动,而不是反应性,以识别和控制社区内潜在暴发的传播。实验结果表明,将支持向量机(SVM)用于二元分类,在不同卫生习惯的分类中表现出约95%的有希望的准确性。此外,基于树的分类器(随机福雷斯特和决策树)通过实现最高精度(100%)优于其他模型,这意味着可以使用振动和非侵入性传感器对卫生事件进行分类,以监测卫生活动。
translated by 谷歌翻译
彼此接触的任何两个物体都会仅仅是由于重力或机械接触而引起的力,例如机器人手臂抓住一个物体,甚至是我们膝关节处的两个骨头之间的接触。自然测量和监视这些接触力的能力允许从仓库管理(基于重量检测错误包装)到机器人技术(使机器人臂的抓地力与人类皮肤一样敏感)和医疗保健(膝关节植入物)的大量应用。设计一个无处不在的力传感器是充满挑战的,该传感器可自然地用于所有这些应用。首先,传感器应足够小,以适合狭窄的空间。接下来,我们不想铺设笨重的电缆来读取传感器的力值。最后,我们需要进行无电池设计以满足体内应用程序。我们开发了WiforCesticker,这是一种无线,无电池,类似贴纸的力传感器,可以在任何表面上都可以无处不在,例如所有仓库包装,机器人手臂和膝关节。 WiforCesticker首先设计一个$ 4 $ 〜mm〜 $ \ $ \ times $〜$〜$ 2 $ 〜mm〜 $ \ $ \ times $〜$〜$〜$ 0.4 $〜毫米电容传感器设计,配备了$ 10 $〜$〜$〜$〜$〜$〜$〜$ 〜mm〜mm 〜mm 〜mm 〜mm在灵活的PCB基材上设计。其次,它引入了一种新的机制,可以通过将传感器与COTS RFID系统插入传感器,从而无线读取器无线读取器可以通过无线读取器读取力信息。该传感器可以在多个测试环境中检测到$ 0 $ -6 $ 〜n的力量,感应精度为$ <0.5 $ 〜n,并在传感器上使用超过10,000美元的$ 10,000 $变化的力级按下。我们还通过设计传感器展示了两个应用程序案例研究,称量仓库包和骨接头施加的传感力。
translated by 谷歌翻译
基于光学传感器的运动跟踪系统通常遭受问题,例如差的照明条件,遮挡,有限的覆盖,并且可以提高隐私问题。最近,已经出现了使用商业WiFi设备的基于射频(RF)的方法,这些方法提供了低成本的普遍感感知,同时保留隐私。然而,RF感测系统的输出,例如范围多普勒谱图,不能直观地代表人类运动,并且通常需要进一步处理。在本研究中,提出了基于WiFi微多普勒签名的人类骨骼运动重建的新颖框架。它提供了一种有效的解决方案,通过重建具有17个关键点的骨架模型来跟踪人类活动,这可以帮助以更易于理解的方式解释传统的RF感测输出。具体地,MDPose具有各种增量阶段来逐渐地解决一系列挑战:首先,实现去噪算法以去除可能影响特征提取的任何不需要的噪声,并增强弱多普勒签名。其次,应用卷积神经网络(CNN)-Recurrent神经网络(RNN)架构用于从清洁微多普勒签名和恢复关键点的速度信息学习时间空间依赖性。最后,采用姿势优化机制来估计骨架的初始状态并限制误差的增加。我们在各种环境中使用了许多受试者进行了全面的测试,其中许多受试者具有单个接收器雷达系统,以展示MDPOST的性能,并在所有关键点位置报告29.4mm的绝对误差,这优于最先进的RF-基于姿势估计系统。
translated by 谷歌翻译
机器学习传感器代表了嵌入式机器学习应用程序未来的范式转移。当前的嵌入式机器学习(ML)实例化遭受了复杂的整合,缺乏模块化以及数据流动的隐私和安全问题。本文提出了一个以数据为中心的范式,用于将传感器智能嵌入边缘设备上,以应对这些挑战。我们对“传感器2.0”的愿景需要将传感器输入数据和ML处理从硬件级别隔离到更广泛的系统,并提供一个薄的界面,以模拟传统传感器的功能。这种分离导致模块化且易于使用的ML传感器设备。我们讨论了将ML处理构建到嵌入式系统上控制微处理器的软件堆栈中的标准方法所带来的挑战,以及ML传感器的模块化如何减轻这些问题。 ML传感器提高了隐私和准确性,同时使系统构建者更容易将ML集成到其产品中,以简单的组件。我们提供了预期的ML传感器和说明性数据表的例子,以表现出来,并希望这将建立对话使我们朝着传感器2.0迈进。
translated by 谷歌翻译
In post-covid19 world, radio frequency (RF)-based non-contact methods, e.g., software-defined radios (SDR)-based methods have emerged as promising candidates for intelligent remote sensing of human vitals, and could help in containment of contagious viruses like covid19. To this end, this work utilizes the universal software radio peripherals (USRP)-based SDRs along with classical machine learning (ML) methods to design a non-contact method to monitor different breathing abnormalities. Under our proposed method, a subject rests his/her hand on a table in between the transmit and receive antennas, while an orthogonal frequency division multiplexing (OFDM) signal passes through the hand. Subsequently, the receiver extracts the channel frequency response (basically, fine-grained wireless channel state information), and feeds it to various ML algorithms which eventually classify between different breathing abnormalities. Among all classifiers, linear SVM classifier resulted in a maximum accuracy of 88.1\%. To train the ML classifiers in a supervised manner, data was collected by doing real-time experiments on 4 subjects in a lab environment. For label generation purpose, the breathing of the subjects was classified into three classes: normal, fast, and slow breathing. Furthermore, in addition to our proposed method (where only a hand is exposed to RF signals), we also implemented and tested the state-of-the-art method (where full chest is exposed to RF radiation). The performance comparison of the two methods reveals a trade-off, i.e., the accuracy of our proposed method is slightly inferior but our method results in minimal body exposure to RF radiation, compared to the benchmark method.
translated by 谷歌翻译
人类身份是对日常生活中许多应用的关键要求,例如个性化服务,自动监视,连续身份验证和大流行期间的接触跟踪等。这项工作研究了跨模式人类重新识别(REID)的问题,对跨摄像机允许区域(例如街道)和摄像头限制区域(例如办公室)的常规人类运动的反应。通过利用新出现的低成本RGB-D摄像机和MMWave雷达,我们提出了同时跨模式多人REID的首个视觉RF系统。首先,为了解决基本模式间差异,我们提出了一种基于人体观察到的镜面反射模型的新型签名合成算法。其次,引入了有效的跨模式深度度量学习模型,以应对在雷达和相机之间由非同步数据引起的干扰。通过在室内和室外环境中进行的广泛实验,我们证明了我们所提出的系统能够达到约92.5%的TOP-1准确性,而在56名志愿者中,〜97.5%的前5位精度。我们还表明,即使传感器的视野中存在多个主题,我们提出的系统也能够重新识别受试者。
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译